期刊文献+

甘蓝型油菜BnCOP1基因编码区全长cDNA的克隆与功能研究 被引量:5

Cloning and Characterization of a Full-length cDNA Encoding Brassica napus Constitutively Photomorphogenic 1
下载PDF
导出
摘要 通过分析拟南芥、豌豆、番茄和水稻的COP1(constitutively photomorphogenic 1)的cDNA序列,运用RT-PCR和改进的基因组步行(genome walking)技术相结合的方法,首次从甘蓝型油菜中克隆到油菜BnCOP1编码区cDNA的全长序列,其全长2 034 bp,编码677个氨基酸.同源性分析表明,其编码的氨基酸序列与拟南芥的同源性高达94%.对BnCOP1编码序列(cDNA)演绎出的氨基酸序列分析表明,其编码的蛋白包含有N端的环形锌指结合域(ring finger zinc bindingdomain,RING)、中间的卷曲螺旋形结构域(coiled-coil domain,coiled-coil),7个C端的WD-40重复序列(WD-40 repeats,WD-40)的功能域.半定量RT-PCR和实时荧光定量PCR分析该基因在油菜中的表达模式,结果显示,BnCOP1在甘蓝型油菜的各个组织器官中均有表达,其中在花中的表达明显高于在根、叶、茎、果荚及子叶和胚轴中,暗示该蛋白可能与开花途径相关.过表达BnCOP1的转基因拟南芥植株在高度、主茎的直径和叶片大小上都呈现出比野生型弱小的表型,表明BnCOP1抑制了拟南芥光形态建成从而影响了植物的生长发育. By analyzing the cDNA sequence of COP1(constitutively photomorphogenic 1) from Arabidopsis thaliana,Pisum sativum,Lycopersicon esculentum and Oryza sativa,combining RT-PCR and modified genome walking,full-length cDNA in encoding region of COP1 with 2 034 bp was first cloned from Brassica napus,which codes a protein with 677 amino acids.Sequence homology analysis of amino acid deduced from the cDNA showed that BnCOP1 shared high homology(94%) with AtCOP1.Sequence analysis of deduced amino acid indicated that one ring,one coiled coil and seven WD40 domains were contained in BnCOP1.Via semi-quantitative RT-PCR and real-time quantitative PCR analysis we demonstrated that BnCOP1 gene expression was detected in all analyzed tissues,the relative expression in flower was significantly higher than that in root,leave,stem,silique,cotyledon andhyposotyl,indicating the possible role of BnCOP1 in the Brassica napus flower pathway.Importantly,the plants appeared slimmer phenotypes in plant height,stem diameter length and leaves size when BnCOP1 gene was overexpressed in Arabidopsis thaliana,which implied BnCOP1 may impair the growth and development of plants by inhibiting plant photomorphogenesis.
出处 《中国生物化学与分子生物学报》 CAS CSCD 北大核心 2011年第1期69-77,共9页 Chinese Journal of Biochemistry and Molecular Biology
基金 国家高技术研究发展计划资助项目(863计划,No.2007AA10Z127) 国家自然科学基金资助项目(No.30800080)~~
关键词 甘蓝型油菜 BnCOP1 RT-PCR 基因组步行 序列分析 转基因 Brassica napus BnCOP1(constitutively photomorphogenic 1) RT-PCR genome walking sequence analysis transgene
  • 相关文献

参考文献24

  • 1Deng X W, Quail P H. Signalling in light-controlled development[J]. Semin CellDev Biol, 1999, 10(2): 121-129.
  • 2Neff M M, Fankhauser C, Chory J. Light: an indicator of time and place[J]. Genes Dev, 2000, 14(3): 257-271.
  • 3马力耕,孙大业.光敏色素与转录因子结合直接调控植物基因表达和发育[J].生命科学,2001,13(4):148-150. 被引量:10
  • 4孙梅,周波,王宇,李玉花.植物光调控因子COP1、HY5的研究进展[J].生物技术通讯,2009,20(2):291-294. 被引量:5
  • 5Deng X W, Caspar T, Quail P H. Copl : a regulatory locus involved in light-controlled development and gene expression in Arabidopsis[J]. Genes Dev, 1991 , 5(7) : 1172-1182.
  • 6Deng X W, Matsui M, Wei N, et al. COPl:an Arabidopsis regulatory gene, encodes a protein with zinc- binding motif and αGβ homologus domain[J]. Cell, 1992, 71(5) : 791-801.
  • 7yon Arnim A G, Osterlund M T, Kwok S F, et al. Genetic and developmental control of nuclear accumulation of COPI, a repressor of photomorphogenesis in Arabidopsis[J]. Plant Physiol, 1997, 114(3) :779-788.
  • 8McNellis T W, yon Arnim A G, Araki T. Genetic and molecular analysis of allelic series of copl mutants suggests functional roles for the multiple protein domains [ J ]. Plant Cell, 1994, 6 (4) : 487 -500.
  • 9McNellis T W, von Arnim A G, Deng X W. Overexpression of Arabidopsis thaliana COPI results in partial suppression mediated development: evidence for a light-inactivable repressor of photomorphogenesis[ J]. Plant Cell, 1994, 6(10) : 1391-1400.
  • 10Ang L H, Deng X W. Regulatory hierarchy of photomorphogenic loci: allele-specific and light-dependent interaction between the HY5 and COPI loci[Jl. Plant Cell, 1994, 6(5): 613-628.

二级参考文献56

  • 1姚国华,钟伯雄,颜新培,沈飞英,陈齐龙,周丽,童小芬.家蚕胚胎发育关联的初始蛋白质研究[J].蚕业科学,2004,30(4):436-439. 被引量:10
  • 2陈晓武,施志仪.牙鲆碱性磷酸酶cDNA序列分析与蛋白质高级结构预测[J].中国生物化学与分子生物学报,2007,23(6):442-449. 被引量:7
  • 3Edwards R G. The significance of parthenogenetic virgin mothers in bonnethead sharks and mice [J]. Reprod Biomed Online, 2007, 15 (1): 12-15.
  • 4Roh S, Malakooti N, Morrison JR, et al. Parthenogenetic activation of rat ooeytes and their development (in vitro) [J]. Reprod Fertil Dev, 2003, 15(1-2) : 135-140.
  • 5Tretjk A P, Ryskov A P, Sevastyanova G A, et al. DNA fingerprints of Bombyx mori L. Testing of genotypic variability of parthenogenetic strains [J]. FEBS Lett, 1992, 303(2-3):255-260.
  • 6Atchley W R. Evolutionary consequences of parthogenesis: evidence from the Warramaba virgo complex [J]. Proc Nail Aead Sci U S A, 1977, 74(3) : 1130-1134.
  • 7Boiko E A, Sukhanov S V, Shakhbazov V G. The effect of heterosis and inheritance of quantitative traits in silkworm exposed to electromagnetic irradiation [J]. Genetika, 2004, 40(9) : 1209-1214.
  • 8Astaurov B L,Vereiskaia V N. Long-term reproduction of triploid and tetraploid parthenogenetic clones of silkwomts during artificial thermal parthenogenesis [J]. Ontogenez, 1977, 8(1) :3-10.
  • 9Kruger N J, in: Walker, J M (Ed). The protein protocols handbook [M]. Hurtmna Press Inc, Totowa, NJ, 1996, 15-20.
  • 10Gprg A, Obermaier C, Boguth G, et al. Recent developments in two-dimensional gel eleetrophoresis with irmnobilized pH gradients: wide pH gradients up to pH 12, longer separation distances and simplified procedures [J]. Electrophoresis, 1999, 20(4-5): 712- 717.

共引文献25

同被引文献70

  • 1戴思兰.中国菊花与世界园艺(综述)[J].河北科技师范学院学报,2004,18(2):1-5. 被引量:32
  • 2Young S K, Jin A R, Byoung S K.. Discrimination of KoreanRehmannia glutinosa from Chinese Rehmannia glutinosausing sequence-characterized amplified region marker [J].Korean Soc Appl Biol Chem, 2012,55: 1-6.
  • 3Zhou Y Q, Gu F P, Zhou C N, et al. Genetic diversity ofRehmannia glutinosa cultivars based on sequence-relatedamplified polymorphism markers [J]. Sci Hortic, 2010,125: 789-794.
  • 4Peng S, Guo Y H, Qi J J, et al. Isolation and expressionanalysis of tuberous root development related genes inRehmannia glutinosa [J]. Mol Biol Rep, 2010,37(2):1069-1079.
  • 5Yang Y H, Chen X J, Chen J Y,et al. Differential miRNAexpression in Rehmannia glutinosa plants subjected tocontinuous cropping [J]. BMC Plant Biol, 2011,11: 53-56.
  • 6Yang Y H, Chen X J,Chen, J Y,et al. Identification ofNovel and Conserved microRNAs in Rehmanniaglutinosa L. by Solexa sequencing [J]. Plant Mol BiolRep, 2011,29: 986-996.
  • 7Ramasubramanian S,Elena M, Magnus S, et al. Thecrystal structure of a plant 3-ketoacyl-CoA thiolasereveals the potential for redox control of peroxisomalfatty acid (3-oxidation [J]. Mol Biol, 2006, 359: 347-357.
  • 8Akira K, Makoto H, Yuka T,et al. cDNA cloning andexpression of a gene for 3-ketoacyl-CoA thiolase inpumpkin cotyledons [J]. Plant Mol Biol, 1996,31:843-852.
  • 9Germain V, Rylott E L, Larson T R, et al. Requirementfor 3-ketoacyl-CoA thiolase-2 in peroxisome develop-ment, fatty acid p-oxidation and breakdown of triacyl-glycerol in lipid bodies of Arabidopsis seedlings [J].2001, 28(1): 1-12.
  • 10Chris C,Murcha M W, Millar A H,et al Nine3-ketoacyl-CoA thiolases (KATs) and acetoacetyl-CoAthiolases (ACATs) encoded by five genes in Arabidopsisthaliana are targeted either to peroxisomes or cytosol butnot to mitochondria [J], Plant Mol Biol, 2007, 63: 97-108.

引证文献5

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部