期刊文献+

聚碳酸亚丙酯电纺纤维的取向性对大鼠背根神经节生长的影响 被引量:1

INFLUENCE OF ALIGNED ELECTROSPINNING POLY(PROPYLENE CARBONATE) ON AXONAL GROWTH OF DORSAL ROOT GANGLION IN VITRO
原文传递
导出
摘要 目的聚碳酸亚丙酯[poly(propylene carbonate),PPC]是一种具有良好生物降解性和生物相容性的新型生物材料。探讨PPC电纺丝在周围神经组织工程应用的可行性,比较取向性和无序性PPC纤维对大鼠背根神经节(dorsal root ganglion,DRG)生长的影响。方法采用电纺丝技术制备取向性和无序性PPC纤维,扫描电镜观察其表面结构特点。3只新生1~2日龄SD大鼠,雌雄不限,体重4~6 g。取SD大鼠DRG,分别接种至含取向性和无序性PPC纤维的12孔板中,作为实验组及对照组,每组6孔。倒置显微镜下观察DRG生长情况,并于培养7 d行免疫荧光染色和扫描电镜观察,定量比较神经轴突生长长度和雪旺细胞迁移距离。结果电纺丝技术成功制备取向性和无序性PPC纤维,每根纤维直径为800~1 200 nm,形成具有亚微米尺度的结构。取向性PPC纤维约90%纤维丝在其长轴方向,而无序性PPC纤维丝呈各个角度分布。倒置显微镜观察,DRG均在两组PPC纤维生长良好。免疫荧光染色和扫描电镜观察示:实验组轴突和雪旺细胞沿纤维丝方向生长,具有一致的方向性;对照组轴突生长末端呈多方向生长。实验组轴突生长长度为(2 684.7±994.8)μm,对照组为(504.7±52.8)μm,组间比较差异有统计学意义(t=—5.360,P=0.000)。实验组雪旺细胞迁移距离为(2 770.6±978.4)μm,对照组为(610.2±56.3)μm,组间比较差异有统计学意义(t=—5.400,P=0.000)。实验组及对照组内雪旺细胞迁移距离均大于轴突生长长度。结论 PPC纤维与DRG有良好亲和性,亚微米尺度PPC纤维的取向结构决定了DRG轴突和雪旺细胞生长方向,可作为周围神经损伤的修复材料。 Objective Poly(propylene carbonate)(PPC),a newly reported polymer,has good biodegradability and biocompatibility.To explore the feasibility of using electrospinning PPC materials in nerve tissue engineering,and to observe the effect of aligned and random PPC materials on axonal growth of rat dorsal root ganglions(DRGs) in vitro.Methods Either aligned or randomly oriented sub-micron scale polymeric fiber was prepared with an electrospinning process.DRGs were harvested from 3 newborn Sprague-Dawley rats(female or male,weighing 4-6 g),and were incubated into 12-pore plate containing either aligned(the experimental group,n=6) or randomly oriented sub-micron scale polymeric fiber(the control group,n=6).The DRGs growth was observed with an inverted microscope;at 7 days immunofluorescent staining and scanning electronic microscope(SEM) observation were performed to quantify the extent of neurite growth and Schwann cells(SCs) migration.Results Either aligned or random fibers were fabricated by an electrospinning process.The diameter of the individual fiber ranged between 800 nm and 1 200 nm.In aligned PPC material,90% fibers arranged in long axis direction,but the fibers in random PPC material arranged in all directions.The DRGs grew well in 2 PPC materials.On the aligned fiber film,the majority of neurite growth and SCs migration from the DRGs extended unidirectionally,parallel to the aligned fibers;however,neurite growth and SCs migration on the random fiber films oriented randomly.The extents of neurite growth were(2 684.7 ± 994.8) μm on the aligned fiber film and(504.7 ± 52.8) μm on the random fiber films,showing significant difference(t=-5.360,P=0.000).The distances of SCs migration were(2 770.6 ± 978.4) μm on the aligned fiber film and(610.2 ± 56.3) μm on the random fiber films,showing significant difference(t=-5.400,P=0.000).The extent of neurite growth was fewer than the distances of SCs migration in 2 groups.Conclusion The orientation structure of sub-micron scale fibers determines the orientation and extent of DRGs neurite growth and SCs migration.Aligned electrospinning PPC fiber is proved to be a promising biomaterial for nerve regeneration.
出处 《中国修复重建外科杂志》 CAS CSCD 北大核心 2011年第2期171-175,共5页 Chinese Journal of Reparative and Reconstructive Surgery
基金 国家高技术研究发展计划(863)资助项目(2009AA03Z312) 全军医药卫生科研基金资助项目(06Z057) 国家科技支撑计划资助项目(2009BAI87B02)~~
关键词 神经组织工程 电纺丝技术 取向结构 聚碳酸亚丙酯 背根神经节 大鼠 Nerve tissue engineering Electrospinning technology Topological structure Poly (propylene carbonate) Dorsal root ganglion Rat
  • 相关文献

参考文献21

  • 1Zhang M, Yannas IV. Peripheral nerve regeneration. Adv Biochem Eng Biotechnol, 2005, 94: 67-89.
  • 2Subramanian A, Krishnan UM, Sethuraman S. Development of biomaterial scaffold for nerve tissue engineering: Biomaterial mediated neural regeneration. J Biomed Sci, 2009, 16: 108.
  • 3Lohmeyer JA, Siemers F, Machens HG, et al. The clinical use of artificial nerve conduits for digital nerve repair: a prospective cohort study and literature review. J Reconstr Microsurg, 2009, 25(1): 55-61.
  • 4de Ruiter GC, Malessy MJ, Yaszemski MJ, et al. Designing ideal conduits for peripheral nerve repair. Neurosurg Focus, 2009, 26(2): ES.
  • 5Seidlits SK, Lee JY, Schmidt CE. Nanostructured scaffolds for neural applications. Nanomedicine (Lond), 2008, 3(2): 183-199.
  • 6牛晓锋,刘小林.周围神经生物衍生组织工程支架的制备和应用研究[J].中国修复重建外科杂志,2006,20(2):194-198. 被引量:6
  • 7Fawcett JW, Keynes RJ. Peripheral nerve regeneration. Annual Review of Neuroscience, 1990, 13: 43-60.
  • 8Jiang X, Lim SH, Mao HQ, et al. Current applications and future perspectives of artificial nerve conduits. Experimental Neurology, 2010, 223(1 ): 86-101.
  • 9Kim G, Ree M, Kim IJ, et al. Biological affinity and biodegradability of poly (propylene carbonate) prepared from copolymerization of carbon dioxide with propylene oxide. Macromol Res, 2008, 16(5): 473-480.
  • 10Wetle A, Kroger M, Doring M, et al. Electrospun aliphatic polycarbo- nates as tailored tissue scaffold materials. Biomaterials, 2007, 28(13): 2211-2219.

二级参考文献40

  • 1Calder JS, Norris RW. Repair of mixed peripheral nerve using muscle autografts: a preliminary communication. Br J Plastic Surg, 1993,46(7) :557-564.
  • 2Meek MF, Robinson PH, Stokroos I, et al.Electronmicroscopical evaluation of short-term nerve regeneration through a thin-walled biodegradable poly (DLLA-epsilon-CL)nerve guide filled with modified denatured muscle tissue.Biomaterials, 2001,22(10) : 1177-1185.
  • 3Liu XL, Arai T, Sondell M, et al. Use of chemically extracted muscle grafts to repair extended nerve defects in rats. Scand J Plast Reconstr Surg Hand Surg, 2001,35(4):337 345.
  • 4Santo Neto H, Teodori RM, Somazz MC, et al. Axonal regeneration through muscle autografts submitted to local anaesthetic pretreatment. Br J Plast Surg, 1998,51(7):555-560.
  • 5Neto HS, Pertille A, Teodori M, et al. Primary nerve repair by muscle autografts prepared with local anaesthetic. Microsurgery,2004,24(3):188-193.
  • 6Oliveira EF, Mazzer N, Barbieri CH, et al. The use of a muscle graft to repair a segmentary nerve defect. An experimental study using the sciatic nerve of rats as model. J Neurosci Methods,2004,133(1-2) :19-26.
  • 7Savic M, Roganovic Z, Antic B, Repair of peripheral neurotmesis using denatured muscle graft. J Neurol Sci, 1997,150(Suppl 1):338.
  • 8Hems TE, Glasby MA. The limit of graft length in the experimental use of muscle grafts for nerve repair. J Hand Surg(Br), 1993,18 (2) : 165-170.
  • 9Gulati AK, Cole GP. Immunogenicigy and regenerative potential of acellular nerve allografts to repair peripheral in rats and rabbits. Acta Neurochir(wien), 1994,126(2-4):158-164.
  • 10Itoh S, Shinomiya K, Samejima H, et al. Experimental study on nerve regeneration through the basement membrane tubes of the nerve, muscle, and artery. Microsurgery, 1996, 17(10): 525-534.

共引文献15

同被引文献19

  • 1Noble J, Munro CA, Prasad VS, et al. Analysis of upper and lower extremity peripheral nerve injuries in a population of patients with multiple injuries. J Trauma, 1998, 45(1): 116-122.
  • 2de Ruiter GC, Malessy MJ, Yaszemski MJ, et al. Designing ideal con- duits for peripheral nerve repair. Neurosurg Focus, 2009, 26(2): E5.
  • 3Jiang X, Lim SH, Mao HQ, et al. Current applications and future per- spectives of artificial nerve conduits. Exp Neurol, 2010, 223 (1): 86-101.
  • 4Dong MM, Yi TH. Stem cell and peripheral nerve injury and repair. Facial Plast Surg, 2010, 26(5): 421-427.
  • 5Ao Q, Chun-kit F, Yat-ping TA, et al. The regeneration of transected sciatic nerves of adult rats using chitosan nerve conduits seeded with bone marrow stromal cell-derived schwann cells. Biomaterials, 2011, 32(3): 787-796.
  • 6Wang D, Liu XL, Zhu JK, et al. Bridging small-gap peripheral nerve defects using acellular nerve allograft implanted with autologous bone marrow stromal cells in primates. Brain Res, 2008, 1188: 44-53.
  • 7Zheng L, Cui F. Use of chitosan conduit combined with bone marrow mesenchymal stem cells for promoting peripheral nerve regeneration. J Mater Sci Mater Med, 2010, 21(5): 1713-1720.
  • 8Yang J, Wu H, Hu N, et al. Effects of bone marrow stromal cell-con- ditioned medium on primary cultures of peripheral nerve tissues and cells. Neurochem Res, 2009, 34(9): 1685-1694.
  • 9Gu Y, Wang J, Ding F, et al. Neurotrophic actions of bone marrow stromal cells on primary culture of dorsal root ganglion tissues and neurons. J Mol Neurosci, 2010, 40(3): 332-341.
  • 10Ahmet B, Brook GA, Sven M, et al. In vitro assessment of axonal growth using dorsal root ganglia explants in a novel three-dimensional collagen matrix. Tissue Eng, 2007, 13( 12): 2971-2979.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部