期刊文献+

基于傅里叶描述子的高分辨率遥感图像地物形状特征表达 被引量:7

Shape feature representation of ground objects from high-resolution remotely sensed imagery base on Fourier Descriptors
原文传递
导出
摘要 本文在对傅里叶描述子进行归一化的基础上,将该方法引入地物轮廓的形状特征描述中,针对建筑物、农田、道路和河道4种典型地物,分别从谱线特征、不同频段描述子对形状特征的贡献率、形状重构三个方面进行分析,结果表明,在谱线图中,直流分量对形状特征的贡献率在70%以上,低频和高频成分共占7%—24%左右,中频成分的贡献率只有2%—4%左右,仅低频成分(第1—5项)便能够很好地进行地物形状重构。最后将第1—5项描述子应用到基于决策树的面向对象分类中,得出实验区总体分类精度为98.48%,Kappa系数为0.9714。傅里叶描述子的方法能够很好的表达高分辨率遥感图像的地物形状特征。 The traditional Fourier Descriptors(FDs) are normalized in this paper to make it independent of translation, rotation and scale changes.Four typical objects i.e.building,paddy,road and river are selected and their boundaries are expressed as sequences of complex numbers.FDs are obtained through one-dimensional Fourier transform.The characteristics of the frequency spectrum,contribution rate and the shape reconstruction are analyzed.The results show that the different frequency ranges have different contribution rates;the Direct Component(DC) reaches a proportion of more than 70%;the Low Frequency(LF) and High Frequency(HF) totally reach 7%-24%while the Medium Frequency(MF) merely 2%-4%.The LF components(descriptors 1—5) make a commendable reconstruction of objects' shape and these descriptors are applied to the object-oriented classification.The overall classification accuracy is 98.48%with a Kappa coefficient 0.9714.
出处 《遥感学报》 EI CSCD 北大核心 2011年第1期73-87,共15页 NATIONAL REMOTE SENSING BULLETIN
基金 国家高技术研究发展计划(863计划)(编号:2008AA12Z106) 国家自然科学基金项目(编号:40801166) 高等学校博士学科点专项科研基金新教师课题(编号:200802841012)~~
关键词 形状特征 傅里叶描述子 高分辨率 遥感图像 shape feature Fourier Descriptors high-resolution remotely sensed imagery
  • 相关文献

参考文献8

二级参考文献50

  • 1付波,周建中,陈文清,余炳辉.一种基于傅里叶描述子的轴心轨迹自动识别方法[J].电力系统自动化,2004,28(12):40-44. 被引量:14
  • 2韩鸿哲,李彬,王志良,刘冀伟.基于傅立叶描述子的步态识别[J].计算机工程,2005,31(2):48-49. 被引量:21
  • 3王林泉,章文怡,郑刚.区域特征的乐谱识别系统[J].软件学报,1994,5(11):44-49. 被引量:6
  • 4吴健康.数字图像分析[M].北京:人民邮电出版社,1989.10-25.
  • 5胡守仁 余少波 等.神经网络导论:Boltzmann机[M].长沙:国防科技大学出版社,1991..
  • 6[1]Cunado D,Nixon M,Carter J.Using Gait as A Biometric,via Phase-weighted Magnitude Spectra[A].Proceedings of International Conference on Audio-and Video-based Biometric Person Authentication[C].Crans-montana:[s.n.],1997:95-102.
  • 7[2]Little J,Boyd J.Recognizing People by Their Gait:The Shape of Motion[J].Journal of Computer Vision Research,1998,1(2):2-32.
  • 8[3]Huang P,Harris C,Nixon M.Human Gait Recognition in Canonical Space Using Temporal Templates[J].Vision Image and Signal Processing,1999,146(2):93-100.
  • 9[4]Ben Adbelkader C,Cutler R,Davis L.Motion-based Recognition of People in EigenGait Space[A].Proceedings of the IEEE International Conference on Automatic Face and Gesture Recognition[C].Washington:[s.n.],2002:267-274.
  • 10[5]Lee L,Grimson W.Gait Analysis for Recognition and Classification[A].Proceedings of the IEEE International Conference on Automatic Face and Gesture Recognition[C].Washington:[s.n.],2002:155-162.

共引文献308

同被引文献79

引证文献7

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部