期刊文献+

UPF算法在OFDM时变信道估计中的应用

Application of Unscented Particle Filtering Algorithm in OFDM Time-varying Channel Estimation
下载PDF
导出
摘要 为了提高正交频分复用(OFDM)系统中时变信道估计的精度和系统性能,提出一种利用无迹粒子滤波(UPF)算法的OFDM时变信道估计方法。该方法首先将OFDM系统时变信道建模为具有动态特性的状态方程,然后利用UPF算法,结合接收信号动态地估计信道状态。仿真结果表明:在高斯和非高斯环境下,所提的方法均可以获得比采用传统粒子滤波(PF)算法的信道估计方法更高的估计精度和更好的系统性能,因此适用于实际系统。 In order to improve the estimation accuracy and system performance, a time - varying channel estimation method applied the unscented particle filter( UPF) algorithm is proposed for OFDM wireless communication system. By modeling the time - varying channel for dynamic state equation, channel states are estimated dynamically from the received signals by using the UPF algorithm. Simulation results show that the proposed method can acquire higher estimation accuracy and better system performance than the method based on the traditional particle filter( PF) algorithm under the Gaussian and non - Gaussian noise environment. Therefore it is applicable to the actual system.
出处 《电讯技术》 北大核心 2011年第1期40-44,共5页 Telecommunication Engineering
基金 国家自然科学基金资助项目(60702020)~~
关键词 OFDM 时变信道估计 无迹粒子滤波算法 OFDM time - varying channel estimation UPF algorithm
  • 相关文献

参考文献10

  • 1Haykin S, Sayed A H, Zeidler J R , et al. Adaptive tracking of linear time- variant systems by extended RLS algorithms [J]. IEEE Transactions on Signal Processing, 1997, 45(5) : 1118- 1128.
  • 2Middleton D. Non- Gaussian noise models in signal processing for new methods and results for class A and class B noise models[J]. IEEE Transactions on Information Theory, 1999,45(4) : 1129 - 1149.
  • 3Wen Qin, Qicong Peng. Particle filtering for tracking time- varying dispersion channels in OFDM systems[ C] //Proceedings of Information Theory Workshop. Chengdu : IEEE, 2006 : 683 - 686.
  • 4Huber K, Haykin S. Application of particle filter to MIMO wireless communications[ C]//Proceedings of IEEE International Conference on Communications. [ S.l. ] : IEEE, 2003. 2311 - 2315.
  • 5Menve R, Doueet A, Freitas N. The unscented particle filter [ R]//Teehnical Report. UK: Cambridge University, 2000.
  • 6Gordon N J, Salmond D J, Snfith A F M. Novel approach to nonlinear/non- Gaussian Bayesian state estimation [ J ]. IEEE Transactions on Radar and Signal Processing, 1993,140 (2): 107- 113.
  • 7Doucet A, Xiaodong Wang. Monte carlo methods for signal processing [J]. IEEE Signal Processing Magazine, 2005, 22 (6) : 152 - 170.
  • 8Hong Shen Wang, Pao- Chi Chang. On verifying tile first order Markovian assumption for a Rayleigh fading channel [J]. IEEE Transactions on Vehicular Technology, 1996, 45 (2) : 353 - 357.
  • 9BeUo P. Characterization of randomly time - variant linear channel[J]. IEEE Transactions on Communications Systems, 1963,11(4) : 360- 393.
  • 10Xiao Dong Wang, H V Poor. Robust multiuser detection in non - Guassian channel [ J ]. IEEE Transactions on Signal Processing, 1999,47(2) :289 - 305.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部