期刊文献+

一类多线性奇异积分算子的端点估计 被引量:1

Endpoint Estimate for a Kind of Multilinear Singular Integral Operators
下载PDF
导出
摘要 对一类核满足Dini型条件的多线性奇异积分算子,证明其满足LlogL型不等式. For a kind of multiliear singular integral operators with Dini-type kernels,the LlogL type inequalities is obtained.
出处 《河北师范大学学报(自然科学版)》 CAS 北大核心 2011年第1期13-16,共4页 Journal of Hebei Normal University:Natural Science
基金 河北省自然科学基金(08M001) 河北师范大学青年基金(L2009Q03)
关键词 多线性奇异积分算子 DINI型条件 极大函数 multilinear singular integral operators Dini-type condition maximal function
  • 相关文献

参考文献6

  • 1COHEN J. A Sharp Estimate for Multilinear Singular Integral on R^n [J ]. Indiana Univ Math J, 1981(30) :693-702.
  • 2COHEN J ,GOSSELIN J. A BMO Estimate for Multilinear Singular Integral Operators [J]. Trans Amer Math Soc, 1986(314) 661-692.
  • 3HUG N, YANG D C. Sharp Function Estimates and Weighted Norm Inequalities for Multilinear Singular Integral Operators [J].Bull London Math Soc,2003(35):759-769.
  • 4PEREZ C. Endpoint Estimates for Commutators of Singular Integral Operators [J]. J Funct Annal, 1995(128) :163-185.
  • 5HOFMAN S. On Some Nonstandard Calderon-Zygmund Operator [J]. Studia Math, 1994(109) : 105-131.
  • 6STEIN E M. Singular Integral and Differentiability Properties of Functions [ M]. Princeton: Princeton University Press, 1970.

同被引文献9

  • 1DUONG X T, YAN L X. On commutators of fractional integrals[J]. Proc Amer Math Soc, 2004, 132(10) : 3549-3557.
  • 2STEIN E M, WEISS G. Introduction to Fourier analysis on Euclidean spaces[M]. Princeton : Princeton University Press, 1971.
  • 3GRAFAKOS L. On multilinear fractional integrals[J]. Studia Math, 1992, 102( 1 ) : 49-56.
  • 4STEIN E M. Singular integrals and differentiability properties of func- tions[M]. Princeton: Princeton University Press, 1970.
  • 5JANSON S. Mean oscillation and commutators of singular integral oper- ators[J]. Ark Math, 1978, 16(2) i 263-270.
  • 6PEETRE J. On the theory of L. spaces[J]. J Funct Anal, 1969, 4( 1 ) : 71-87.
  • 7ADAMS D 1 A note on Riesz potentials[]]. Duke Math J, 1975,42(4) : 765-778.
  • 8LU S Z, YANG D C. Hardy-Littlewood-Sobolev theorems of fractional integration on Herz-type spaces and its applieations[J]. Can J Math, 1996, 48(2) : 363-380.
  • 9SHIRAI S. Necessary and sufficient conditions for boundedness of eom- mutators of fractional integral operators on classical Morrey spaces [J]. Kokkaido Math J, 2006, 35(3) : 683-696.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部