摘要
假定(X,‖.‖)为可分的Banach空间,X*为其对偶空间且可分.给出了集值上鞅一种新形式的Doob分解定义,证明了一维实空间集值上鞅具有这种形式的Doob分解,举例说明在二维实空间,并非集值上鞅都具有这种形式Doob分解.最后,给出了实Banach空间集值上鞅具有这种形式的Doob分解的充分必要条件.
Let(X,‖·‖) denote a real separable Banach space,whose dual space is X*,and X* is also separable.First of all,a new definition of Doob decomposition for set-valued supermartingale is presented.The definition is feasible for set-valued supermartingale in one dimension real space,but it is not always feasible in two dimensions real space.In order to prove this point,some examples are given.At last,the sufficient and necessary condition of this new Doob decomposition for set-valued supermartingale in real Banach space is discussed.
出处
《河北师范大学学报(自然科学版)》
CAS
北大核心
2011年第1期26-29,共4页
Journal of Hebei Normal University:Natural Science
基金
陕西省自然科学基金(SJ08A28)
武警工程学院基础研究基金(WJY201007)
关键词
集值(上)鞅
DOOB分解
可料增过程
支撑函数
set-valued(super) martingale
Doob decomposition
set-valued predictable increase process
support function