期刊文献+

无线传感器网络中基于熵评判的关联支配集构造算法 被引量:3

Correlation Dominating Set Construction Based upon Entropy Evaluation in Wireless Sensor Networks
下载PDF
导出
摘要 无线传感器网络通常是密集分布的,因此相邻网络节点感知的数据之间具有很大的相关性.为了在无线传感器网络中进行数据冗余缩减,文中提出了一个基于熵评判的关联支配集构造算法(EECDS),算法首先通过评价高斯随机变量的熵值来判断网络节点间的数据相关性,然后分布式地构造一个关联图,最后根据关联图信息移除网络中的冗余节点,构建一个连通关联支配集.基于连通关联支配集的数据采集策略能在密集无线传感器网络中进行高效的数据冗余缩减,显著降低网络的能量消耗,延长网络的生命周期. Wireless sensor networks are usually densely deployed, so the data sensed from neigh- boring sensor nodes is highly correlated. For redundancy removal in wireless sensor networks, this paper presents an algorithm named entropy evaluation for correlation dominating set con- struction (EECDS). The algorithm first determines the correlation degree between sensor nodes by evaluating the entropy of Gaussian random variables, and then distributively generates a corre- lation graph. Based on the correlation graph, the EECDS algorithm finally constructs a connected correlation dominating set by removing redundant sensor nodes. Data gathering policies with the help of connected correlation dominating sets will greatly reduce data redundancy of dense sensor networks, and therefore result in decrease of energy consumption and prolong lifetime of wireless sensor networks.
出处 《计算机学报》 EI CSCD 北大核心 2011年第1期87-95,共9页 Chinese Journal of Computers
基金 国家自然科学基金(61070162 71071028 60802023 70931001) 高等学校博士学科点专项科研基金(20100042110025 20070145017) 中央高校基本科研业务费专项资金(N090504003 N090504006 N100417001) 辽宁省博士科研启动基金项目(20101040)资助
关键词 无线传感器网络 信息熵 微分熵 关联图 关联支配集 冗余缩减 wireless sensor networks information entropy differential entropy correlation graph correlation dominating set redundancy removal
  • 相关文献

参考文献22

  • 1Von Rickenbach P, Wattenhofer R. Gathering correlated data in sensor networks//Proceedings of the 2004 Joint Workshop on Foundations of Mobile Computing (DIALMPOMC'04). Philadelphia, PA, United States, 2004:60-66.
  • 2Chou J, Petrovic D, Kannan R. A distributed and adaptive signal processing approach to reducing energy consumption in sensor networks//Proceedings of the 22nd Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM'03). San Francisco, CA, USA, 2003: 1054- 1062.
  • 3Cristescu R, Vetterli M. Power efficient gathering of correlated data: Optimization, np-completeness and heuristics. SIGMOBILE Mobile Computing and Communications Review, 2003, 7(3):31-32.
  • 4Cristescu R, Beferull-Lozano B, Vetterli M. On network correlated data gathering//Proceedings of the 23rd Annual Joint Conference of the IEEE Computer and Communications Societies(INFOCOM'04). Hong Kong, China, 2004: 2571- 2582.
  • 5Ganesan D, Cristescu R, Beferull-Lozano B. Power-efficient sensor placement and transmission structure for data gathering under distortion constraints//Proceedings of the 3rd International Symposium on Information Processing in Sensor Networks(IPSN'04). Berkeley, CA, USA, 2004:142-150.
  • 6Goel A, Estrin D. Simultaneous optimization for concave costs: Single sink aggregation or single source buy-at-bulk. Algorithmiea, 2005, 43(1-2): 5-15.
  • 7Enachescu M, Goel A, Govindan R, Motwani R. Scale free aggregation in sensor networks//Proceedings of the 1st International Workshop on Algorithmic Aspects of Wireless Sensor Networks(Algosensors'04). Turku, Finland, 2004: 71-84.
  • 8Yoon SunHee, Shahabi Cyrus. Exploiting spatial correlation towards an energy efficient clustered aggregation technique (CAG)//Proceedings of the International Conference on Communications (ICC'05). Seoul, South Korea, 2005: 3307- 3313.
  • 9Gupta H, Navda V, Das S, Chowdhary V. Efficient gathering of correlated data in sensor networks. ACM Transactions on Sensor Networks, 2008, 4(1) : 1-31.
  • 10Cover T M, Thomas J A. Elements of Information Theory. New York: John Wiley and Sons, Inc. , 1991.

同被引文献19

  • 1阎新芳,刘爱琴,杨挺.基于极小独立支配集的MANET虚拟骨干网算法[J].电子学报,2007,35(6):1134-1138. 被引量:7
  • 2HANDCOCK R N,SWAIN D L,BISHOP-HURLEY G J,et al.Monitoring animal behaviour and environmental interac-tions using wireless sensor networks[J].GPS Collars and Satellite Remote Sensing Sensors,2009,9(5):3586-3603.
  • 3WARK T,CROSSMAN C,VALENCIA P,et al.Sensor and actuator networks:protecting environmentally sensitive areas[J].Ieee Pervasive Computing,2009,8(1):30-36.
  • 4NADIMI E S,SOGAARD H T,BAK T.ZigBee-based wireless sensor networks for classifying the behaviour of a herd ofanimals using classification trees[J].Biosystems Engineering,2008,100(2):167-176.
  • 5GAREYM R,JOHNSOND S.Computers and intractability:a guide to the theory of NP-Completeness[M].San Francisco:Freeman and Company,1979:71-72.
  • 6WAN P J,ALZOUBI K M,FRIEDER O.Distributed construction of connected dominating set in wireless ad hoc networks[J].Mobile Networks&Applications,2004,9(2):141-149.
  • 7WU J,DAI F,GAO M,et al.On calculating power-aware connected dominating sets for efficient routing in ad hoc wire-less networks[J].Journal of Communications and Networks,2002,4(1):59-70.
  • 8DAI F,WU J.An extended localized algorithm for connected dominating set formation in ad hoc wireless networks[J].Ieee Transactions on Parallel and Distributed Systems,2004,15(10):908-920.
  • 9STOJMENOVIC I,SEDDIGH M,ZUNIC J.Dominating sets and neighbor elimination-based broadcasting algorithms inwireless networks[J].Ieee Transactions on Parallel and Distributed Systems,2002,13(1):14-25.
  • 10WU W L,DU H W,JIA X H,et al.Minimum connected dominating sets and maximal independent sets in unit diskgraphs[J].Theoretical Computer Science,2006,352(1-3):1-7.

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部