期刊文献+

非线性随机延迟微分方程Heun方法的数值稳定性 被引量:5

NUMERICAL STABILITY OF HEUN METHODS FOR NONLINEAR STOCHASTIC DELAY DIFFERENTIAL EQUATIONS
原文传递
导出
摘要 本文讨论一般非线性随机延迟微分方程Heun方法的数值稳定性,证明了如果问题本身满足零解是均方指数稳定和均方渐近稳定的充分条件,则当方程的漂移项进一步满足一定的条件时,Heun方法是MS-稳定的,带线性插值的Heun方法是均方指数稳定的和GMS-稳定的理论结果.文末的数值试验进一步验证了所得的相关结论. In this paper, the authors investigated the numerical stability of Heun methods for nonlinear stochastic delay differential equations. When the analytical solution satisfies the conditions of mean-square stability, and if the drift term satisfy some restrictions, then the Heun methods with linear interpolation procedure is exponential mean-square stable and GMS-stable, the Heun methods is mean-square stable(MS-stable). Moreover, these results are also verified by some numerical examples.
出处 《计算数学》 CSCD 北大核心 2011年第1期69-76,共8页 Mathematica Numerica Sinica
基金 广东省高等学校珠江学者计划 国家自然科学基金(10871207) 973项目(2005CB321703) 教育部高校博士点基金(20094301110001) 湖南省自科基金(09JJ3002) 湘潭大学博士后科学基金资助项目
关键词 随机延迟微分方程 Heun方法 插值 均方指数稳定 MS-稳定 GMS-稳定 stochastic delay differential equations Heun methods interpolation exponential mean-square stability MS-stability GMS-stability
  • 相关文献

参考文献11

  • 1Christopher T H Baker. Evelyn Buckwar, Exponential stability in p-th mean of solutions, and of convergent Euler-type solutions, of stochastic delay differential equations[J]. J. Comput. Appl. Math., 2005, 184: 404-427.
  • 2Xuerong Mao. Exponential stability of equidistant Euler-Maruyama approximations of stochastic differential delay equations[J]. J. Comput. Appl. Math., 2007, 200: 297-316.
  • 3Yaozhong Hu, Salah-Eldin A. Mohammed, Feng Yan. Discrete-time approximations of stochastic differential systems with memory. Dept. Mathematics[OL]. Southern Illinois Univ., Carbondale. Available at http://sfde.math.siu.edu/recentpub.html.2001.
  • 4Yaozhong Hu, Salah-Eldin A. Mohammed, Feng Yan. Discrete-time approximations of stochastic delay equations: the Milstein scheme[J]. The Annals of Probability, 2004, 32(1A): 265-314.
  • 5Wanrong Cao, Mingzhu Liu, Zhencheng Fan. MS-stability of the Euler-Maruyama method for stochastic differential delay equations[J]. Applied Mathematics and Computation, 2004, 159: 127- 135.
  • 6Zhiyong Wang, Chengjian Zhang. An analysis of stability of Milstein method for stochastic dif- ferential equations with delay[J]. Computers and Mathematics with Applications, 2006, 51: 1445- 1452.
  • 7Norbert Hofmann, Thomas Muller-Gronbach, A modified Milstein scheme for approximation of stochastic delay differential equations with constant time lag[J]. Journal of Computational and Applied Mathematics, 2006, 197: 89-121.
  • 8王文强,黄山,李寿佛.非线性随机延迟微分方程Euler-Maruyama方法的均方稳定性[J].计算数学,2007,29(2):217-224. 被引量:10
  • 9王文强,李寿佛,黄山.非线性随机延迟微分方程Euler-Maruyama方法的收敛性[J].系统仿真学报,2007,19(17):3910-3913. 被引量:6
  • 10王文强,李寿佛,黄山.非线性随机延迟微分方程半隐式Euler方法的收敛性[J].云南大学学报(自然科学版),2008,30(1):11-15. 被引量:9

二级参考文献25

  • 1曹婉容,刘明珠.随机延迟微分方程Euler-Maruyama数值方法的T-稳定性[J].哈尔滨工业大学学报,2005,37(3):303-305. 被引量:10
  • 2曹婉容,刘明珠.随机延迟微分方程半隐式Milstein数值方法的稳定性[J].哈尔滨工业大学学报,2005,37(4):446-448. 被引量:8
  • 3王文强,黄山,李寿佛.非线性随机延迟微分方程Euler-Maruyama方法的均方稳定性[J].计算数学,2007,29(2):217-224. 被引量:10
  • 4Cao Wanrong,Liu Mingzhu and Fan Zhencheng,MS-stability of the Euler-Maruyama method for stochastic differential delay equations.Applied Mathematics and Computation,2004,159:127-135.
  • 5Liu Mingzhu,Cao Wanrong and Fan Zhencheng,Convergence and stability of the semiimplicit Euler method for a linear stochastic differential delay equation.J.Comput.Appl.Math.,2004,170(2):255-268.
  • 6Christopher T.H.Baker,Evelyn Buckwar.Exponential stability in p-th mean of solutions,and of convergent Euler-type solutions,of stochastic delay differential equations.Journal of Computational and Applied Mathematics,2005,184:404-427.
  • 7Wang Zhiyong,Zhang Chengjian,An analysis of stability of Milstein method for stochastic differential equations with delay.Computers and Mathematics with Applications,2006,51:1445-1452.
  • 8Mao X.Razumikhin-Type theoremson exponential stability of stochastic functional differential equations.Stochastic Processes and their Applications,1996,65:233-250.
  • 9Mao Xuerong.Stochastic differential equations and applications.Horwood,New York,1997.
  • 10E Buckwar. Introduction to the numerical analysis of stochastic delay differential equations [J]. J. Comp. App. Math. (S0377-0427), 2000, 125(1): 297-307.

共引文献15

同被引文献36

引证文献5

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部