期刊文献+

基于小波与齐次Besov空间的图像分割算法

IMAGE SEGMENTATION ALGORITHMS BASED ON WAVELET AND HOMOGENEOUS BESOV SPACE
原文传递
导出
摘要 从具有全局最优解的几何活动轮廓方法出发,分别提出了两种基于齐次Besov空间与小波变换的图像分割算法,并给出了解的存在性证明.数值求解利用小波软阈值以及分裂Bregman方法,能够有效提高计算效率.由于小波变换具有多分辨特性,对于包含较多细节信息的图像,采用新算法能够得到更好的分割效果.数值实验表明采用新算法能够获得较好的分割效果,并具有较高的计算效率. Two image segmentation algorithms were proposed based on homogeneous Besov space, inspired from geodesic active contors methods with global minimizers. Meanwhile the existence of the solution was proved. Those new algorithms can be resolved efficiently through wavelet soft threshold thanks to the conections between wavelet transform and Besov s- pace semi-norm. And split Bregman method was also adopted in one of algorithms. Dwe to the multiresolution character of wavelet, they are proper to segment images containing more fine information. Numerical simulations show that the proposed methods can improve computation efficiency and result in good segmentation.
出处 《计算数学》 CSCD 北大核心 2011年第1期103-112,共10页 Mathematica Numerica Sinica
基金 国家自然科学基金(10601068) 全国优秀博士论文资助基金(2005043).
关键词 图像分割 BESOV空间 小波变换 总变差 分裂Bregman方法 Image Segmentation Besov Space Wavelet Transform Total Variation Split Bregman Method
  • 相关文献

参考文献18

  • 1Mumford D and Shah J. Optimal approximation by piecewise smooth functions and associated variational problems[J]. Comm. Pure. Appl. Math., 1989, 42: 577-685.
  • 2Chan T and Vese L. Active contours without edges[J]. IEEE Transaction on Image Processing, 2001, 10(2): 266-277.
  • 3Rousson M and Deriche R. A Variational framework for active and adaptative segmentation of vector valued images[C]//Proc.IEEE Workshop on Motion and Video Computing, Orlando, Florida, Dec. 2002, 56-61.
  • 4Sethian J. A fast marching level set method for monotonically advancing fronts[C] //Proceedings of the National Academy of Sciences of the United States of America, 1996, 93: 1591-1595.
  • 5Tsai Y,Cheng L, Osher S, and Zhao H. Fast sweeping algorithms for a class of Hamilton-Jacobi equations,CAM Report 01-27[R], Los Angeles ,USA:UCLA, 2001.
  • 6Li C M, Xu C Y, Gui C F, and Martin D. Level set evolution without re-initialization: a new variational formulation [C]// Proceedings of the IEEE Computer Society Conference on CVPR. San Diego, CA, USA: IEEE Press, 2005, 1: 430-436.
  • 7Chan T, Esedoglu S and Nikolova M. Algorithms for finding global minimizers of image segmentation and denoising models[J]. SIAM Journal on Applied Mathematics, 2006, 66(5): 1632-1648.
  • 8Bresson X, Esedoglu S, Vandergheynst P, Thiran J and Osher S. Fast global minimization of the active contour/snake model[J]. Journal of Mathematical Imaging and Vision, 2007, 28: 151-167.
  • 9Houhou N, Thiran J-P, and Bresson X. Fast texture segmentation model based on the shape operator and active contour[C]//Proceedings of Computer Vision and Pattern Recognition, Anchorage, Alaska, IEEE, 2008: 1-8.
  • 10Chambolle A. An algorithm for total variation minimization and applications[J]. Journal of Mathematical Imaging and Vision, 2004, 20: 89-97.

二级参考文献9

  • 1朱宁,吴静,王忠谦.图像放大的偏微分方程方法[J].计算机辅助设计与图形学学报,2005,17(9):1941-1945. 被引量:49
  • 2Guichard F, Malgouyres F. Total variation based interpolation//Proceedings of the European Signal Processing Conference. Island of Rhodes, Greece, 1998(3) : 1741-1744
  • 3Guichard F, Malgouyres F. Edge direction preserving image zooming: A mathematical and numerical analysis. SIAM Journal of Numerical Analysis, 2001, 39(1): 1-37
  • 4Chambolle A. An algorithm for total variation minimization and applications. Journal of Mathematical Imaging and Vision, 2004, 20(1-2): 89-97
  • 5DeVore R A. Nonlinear approximation. Acta Numerica, Cambridge University Press, 1998, 7:51-150
  • 6Chambolle A, DeVore R A, Lee N. Nonlinear wavelet image processing: Variational problem, compression and noise removal through wavelet shrinkage. IEEE Transactions on Image Processing, 1998, 72 319-335
  • 7Daubechies I. Wavelet transforms and orthonormal wavelet bases//Different Perspectives on Wavelets (San Antonio, TX, 1993), volume 47 of Proceedings of the Symposium in Applied Mathematics, American Mathematical Society, Providence, RI, 1993:1-33
  • 8Lorenz D A. Solving variational problems in image processing via projections-A common view on TV denoising and wavelet shrinkage. University of Bremen, Zeitschrift for Angewandte Mathematik und Mechanik, 2004, 87(3) : 247-256
  • 9Cohen A, DeVore R, Petrushev P et al. Nonlinear approxima tion and the space BV(R2). American Journal of Mathematics, 1999, 121(3): 587-628

共引文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部