期刊文献+

SSUKF-WNN算法及其在飞行器气动力建模中的应用 被引量:3

SSUKF-WNN algorithm and its applications in aerodynamic modeling of fight vehicle
原文传递
导出
摘要 针对传统小波网络算法的不足,提出一种基于改进无迹Kalman滤波(UKF)的小波网络算法.该算法使用一种基于简化球形分布Sigma点的UKF(SSUKF)来训练小波网络的参数,以提高小波网络的学习性能和训练质量.飞行器气动力建模算例表明,相对于BP算法和EKF算法,SSUKF算法训练的小波网络收敛速度更快,估计精度更高,计算量更小.同时也为飞行器的气动力建模提供了一种有效可行的手段. For the shortcoming of traditional wavelet neural network(WNN),a WNN algorithm based on modified unscented Kalman filter(UKF) is proposed.The algorithm uses an UKF based on Sigma point of simplex spherical distribution(SSUKF)to train the parameters of WNN,which can improve the learning ability and training quality of WNN.The experiment results on aerodynamic modeling of fiight vehicle show that,compared with BP and extended Kalman filter(EKF),the WNN trained by SSUKF algorithm has a better ability with features of convergence,precision and calculation,and is also a good method for aerodynamic modeling of fiight vehicle.
出处 《控制与决策》 EI CSCD 北大核心 2011年第2期187-190,195,共5页 Control and Decision
关键词 小波网络 KALMAN滤波 气动力 飞行器 wavelet neural network Kalman filter aerodynamic force fiight vehicle
  • 相关文献

参考文献10

  • 1Zhang Q, Benveniste A. Wavelet networks[J]. IEEE Trans on Neural Networks, 1992, 3(6): 889-898.
  • 2Oh J S, Park J B, Choi Y H. Path tracking control using a wavelet neural network for mobile robot with extended kalman filter[C]. Proc of Int Conf on Control, Automation and Systems. Gyeongju, 2003: 1283-1288.
  • 3Kim K J, Park J B,Choi Y H. The adaptive learning rates of extended kalman filter based training algorithm for wavelet neural networks[C]. 5th Mexican Int Conf on Artificial Intelligence. Apizaco, 2006: 327-337.
  • 4Wan E A, R Van Der Merwe. The unscented kalman filter for nonlinear estimation[C]. Adaptive Systems for Signal Processing, Communications, and Control Symposium. Lake Louise Alberta, 2000: 153-158.
  • 5Julier S J, Uhlmann J K, Durrant-whyte H E A new approach for the nonlinear transformation of means and covarianees in filters and estimators[J]. IEEE Trans on Automatic Control, 2000, 45(3): 477-482.
  • 6Julier S J, Uhlmann J K. Unscented filtering and nonlinear estimation[J]. Proc of the IEEE, 2004, 92(3): 401-422.
  • 7Julier S J. The spherical simplex unscented transformation[C]. Proc of the American Control Conf. Denver, 2003: 2430-2434.
  • 8Robert A H. On the use of backpropagation with feedforward neural network for aerodynamic estimation problem[C]. AIAA Atmospheric Flight Mechanics Conf. Monterrey, 1993: 233-241.
  • 9Dennis J L, Robert F S. Identification of aerodynamic coefficients using computational neural networks[J]. AIAA J of Guidance, Control and Dynamics, 1993, 16(6): 1018- 1025.
  • 10Ravindra V Jategaonkar. Flight vehicle system identification: A time domain methodology[C]. Progress in Astronautics and Aeronautics Series. Reston: AIAA, 2006: 205-207, 336-345.

同被引文献8

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部