期刊文献+

基于自适应增强算法的支持向量机组合模型 被引量:4

Compositional model of SVM based on AdaBoosting algorithm
原文传递
导出
摘要 为了提高软测量模型的泛化能力,提出一种基于AdaBoosting算法的组合支持向量机(SVM)模型.该方法在贝叶斯分析的基础上,利用样本概率初始化惩罚系数,依据回归过程中的损失函数更新惩罚系数权重,使得SVM训练模型有强、弱之分,突出一些重要样本的作用,以提高模型的估计精度和泛化能力.仿真结果表明,依据该方法建立的组合模型明显改善了软测量模型的估计能力和泛化能力. In order to improve the generalization ability of a soft-sensor model,a compositional model of SVM based on AdaBoosting algorithm is proposed.On the basis of Bayesian analysis,the penalty coefficient is initialized by using the Bayesian probability of the samples,and then the penalty weight is updated by the loss function in the regression process so that the SVM training model can highlight some important samples to improve its estimation accuracy and generalization ability.Simulation result shows that this approach can greatly improve the estimation capacity and generalization ability of the model.
出处 《控制与决策》 EI CSCD 北大核心 2011年第2期316-319,共4页 Control and Decision
基金 国家自然科学基金项目(60674092)
关键词 支持向量机 自适应增强算法 组合模型 support vector machine AdaBoosting algorithm compositional model
  • 相关文献

参考文献5

  • 1Freund Y, Schapire R. A decision-theoretic generalization of online learning and an application to boosting[J]. J of Computer and System Science, 1997, 55(1): 119-139.
  • 2Freund Y, Schapire R. Experiments with a new boosting algorithm[C]. Machine Learning: Proc of the 13th Int Conf. Morgan Kaufmann, 1996: 148-156.
  • 3Hall M. A decision tree-based attribute weighting filter for naive Bayes[J]. Knowledge-based Systems, 2007, 20(2): 120-126.
  • 4Addin O, Sapuan S, Mahdi E, et al. A naive-bayesian classifier for damage detection in engineering materials[J]. Materials and Design, 2007, 28(8): 2379-2386.
  • 5Ridgeway G, Madigan D, Richardson T. Boosting methodology for regression problems[C]. Proc of the 7th Int Workshop on Artificial Intelligence and Statistics. San Francisco: Morgan Kaufmann Publishers, 1999: 152-161.

同被引文献27

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部