期刊文献+

DEFORMING METRICS WITH POSITIVE CURVATURE BY A FULLY NONLINEAR FLOW

DEFORMING METRICS WITH POSITIVE CURVATURE BY A FULLY NONLINEAR FLOW
下载PDF
导出
摘要 By studying a fully nonlinear flow deforming conformal metrics on a compact and connected manifold, we prove the long time existence and the exponential convergence of the solutions of the flow for any initial metric g0 with the Schouten tensor Ag0 ∈ Γk. By studying a fully nonlinear flow deforming conformal metrics on a compact and connected manifold, we prove the long time existence and the exponential convergence of the solutions of the flow for any initial metric g0 with the Schouten tensor Ag0 ∈ Γk.
作者 岳赟 盛为民
出处 《Acta Mathematica Scientia》 SCIE CSCD 2011年第1期159-171,共13页 数学物理学报(B辑英文版)
基金 Research supported by NSFC (10771189 and 10831008)
关键词 Fully nonlinear flow conformal metrics Schouten tensor Fully nonlinear flow conformal metrics Schouten tensor
  • 相关文献

参考文献16

  • 1Brendle S, Viaclovsky J A. A variational characterization for σn/2 Calc Var Partial Differential Equations, 2004, 20(4): 399-402.
  • 2Chang S A, Gursky M J, Yang P. An equation of Monge-Ampere type in conformal geometry, and fourmanifolds of positive Ricci curvature. Ann of Math, 2002, 155(2): 709- 787.
  • 3Chang S A, Gursky M J, Yang P. An a priori estimate for a fully nonlinear equation on four-manifolds. J Anal Math, 2002, 87:151-186.
  • 4Gursky M J, Viaclovsky J A. Fully nonlinear equations on Riemannian manifolds with negative curvature. Indiana Univ Math J, 2003, 52:399-419.
  • 5Gursky M J, Viaclovsky J A. Prescribing symmetric functions of the eigenvalues of the Ricci tensor. Ann of Math (2), 2007, 166(2): 475-531.
  • 6Guan P F, Wang G F. A fully nonlinear conformal flow on locally conformally fiat manifold. J Reine Angew Math, 2003, 557:219-338.
  • 7Guan P F, Wang G F. Geometric inequalities on locally conformally fiat manifolds. Duke Math J, 2004, 124:177-212.
  • 8Krylov N V. Nonlinear elliptic and parabolic equations of the second order. Dordrecht: D. Reidel Pub- lishing Company, 1987.
  • 9Li Y Y. Some existence results for fully nonlinear elliptic equations of Monge-Ampere type. Comm Pure Appl Math, 1990, 43(2): 233-271.
  • 10Li A, Li Y Y. On some conformally invariant fully nonlinear equations. Comm Pure Appl Math, 2004, 56(10): 1416-1464.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部