期刊文献+

CYCLIC CODES OVER FORMAL POWER SERIES RINGS 被引量:1

CYCLIC CODES OVER FORMAL POWER SERIES RINGS
下载PDF
导出
摘要 In this article, cyclic codes and negacyclic codes over formal power series rings are studied. The structure of cyclic codes over this class of rings is given, and the relationship between these codes and cyclic codes over finite chain rings is obtained. Using an isomorphism between cyclic and negacyclic codes over formal power series rings, the structure of negacyclic codes over the formal power series rings is obtained. In this article, cyclic codes and negacyclic codes over formal power series rings are studied. The structure of cyclic codes over this class of rings is given, and the relationship between these codes and cyclic codes over finite chain rings is obtained. Using an isomorphism between cyclic and negacyclic codes over formal power series rings, the structure of negacyclic codes over the formal power series rings is obtained.
出处 《Acta Mathematica Scientia》 SCIE CSCD 2011年第1期331-343,共13页 数学物理学报(B辑英文版)
基金 supported by SRF for ROCS,SEM,the Key Project of Chinese Ministry of Education (108099) CCNU Project (CCNU09Y01003)
关键词 Finite chain rings cyclic codes negacyclic codes γ-adic codes Finite chain rings cyclic codes negacyclic codes γ-adic codes
  • 相关文献

参考文献22

  • 1Calderbank A R, Sloane N J A. Modular and p-adic cyclic codes. Designs, Codes, Cryptogr, 1995, 6: 21-35.
  • 2Kanwar P, Lopez-Permouth S R. Cyclic codes over the integers modulo p^m. Finite Fields Appl, 1997, 3: 334 352.
  • 3Wan Z. Cyclic codes over Galois rings. Alg Colloq, 1999, 6:291-304.
  • 4Norton G H, Salagean A. On the structure of linear and cyclic codes over a finite chain ring. Appl Algebra Engrg Comm Comput, 2000, 10:489 -506.
  • 5Dinh H, Lopez-Permouth S R. Cyclic and negacyclic codes over finite chain rings. IEEE Trans Inform Theory, 2004, 50:1728 -1744.
  • 6Dougherty S T, Park Y H. On modular cyclic codes. Finite Fields Appl, 2007, 13:31- 57.
  • 7Forney G D, Sloaue N J A, Trott M. The Nordstrom-Robinsou code is the binary image of the octacode//Calderbank et al. Coding and Quantization: DIMACS/IEEE workshop 1992, Amer Math Soc, 1993.
  • 8Hammons A R Jr, Kumar P V, Calderbank A R, Sloane N J A, Sole P. The Z4 linearity of Kerdock, Preparata, Goethals and related codes. IEEE Trans Inform Theory, 1994, 40:301- 319.
  • 9Sole P. Open problem 2: cyclic codes over rings and p-adic fields//Coding theory and applications (Toulon, 1988), 329, Lecture Notes in Comput Sci, 388. New York: Springer, 1989.
  • 10Dougherty S T, Kim S Y, Park Y H. Lifted codes and their weight enumerators. Discrete Math, 2005, 305:123-135.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部