摘要
考虑一类食饵种群具有密度制约项且具有常投放率而捕食者种群具有常收获率的Holling-Ⅳ类功能性反应捕食系统.通过对系统等倾线性态的讨论,判断出正平衡点的存在,进而给出正平衡点存在的条件,并分析了正平衡点的稳定性,证明了闭轨的不存在性.
A prey-predator model with constant investment rate and dense restriction for prey and constant harvesting rate for predator under Holling-Ⅳ functional response was studied.The existence of the positive equilibrium point was discussed by using isoclines shape,and the condition for the existence and the stability of the equilibrium point were analysed.Finally,the nonexistence of the closed orbit was proven by Dulac function.
出处
《吉林大学学报(理学版)》
CAS
CSCD
北大核心
2011年第1期11-15,共5页
Journal of Jilin University:Science Edition
基金
国家自然科学基金(批准号:10771085)
黑龙江省教育厅科学技术研究资助项目(批准号:11531426)
关键词
常收获率
常投放率
等倾线
平衡点
闭轨
constant harvesting rate
constant investment rate
isoclines
equilibrium point
closed-orbit