摘要
运用条件Lie-Ba¨cklund对称与不变子空间理论相结合的方法研究(2+1)维拟线性抛物方程3种形式的广义泛函分离变量解,即广义泛函多项式形式解、广义泛函三角函数形式解和广义泛函指数形式解,并对方程进行完全分类,得到了精确解中未知函数满足的动力系统.
Utilizing conditional Lie-Ba¨cklund symmetry associated with invariable subspace theory,we studied three types of generalized functional separation variable solutions for(2 + 1)-dimensional quasilinear parabolic equation,that is,generalized functional polynomial type solution,generalized functional trigonometric function type solution and generalized functional exponent type solution.As a result,a complete classification of the quasilinear equation was obtained.At the same time,we obtained the dynamic system satisfied by the unknown function among the exact solution.
出处
《吉林大学学报(理学版)》
CAS
CSCD
北大核心
2011年第1期16-20,共5页
Journal of Jilin University:Science Edition
基金
国家自然科学基金(批准号:10671156)
陕西省教育厅科研基金(批准号:2010JK866)
关键词
(2+1)维拟线性抛物方程
不变子空间
泛函分离变量
精确解
(2+1)-dimensional quasilinear parabolic equation
invariant subspace
functional separation variable
exact solution