摘要
设{Xn,n≥1}为一零均值有界的α-弱相依序列,满足∞∑i=1θi<∞;{αni,1≤i≤n,n≥1}为一实值三角阵列;令Sn,k=k∑i=1αniXi,1≤k≤n.利用随机变量加权和的弱收敛定理与Borel-Cantelli引理,在适当的假设条件下,给出了非平稳有界的α-弱相依序列加权和Sn,n的几乎处处中心极限定理.
Let {Xn,n≥1} be a sequence of bounded α-weak dependence random variances with zero means and ∞∑i=1θi∞,and {ani,1≤i≤n,n≥1} be a triangular array of real numbers,and assume that Sn,k=k∑i=1αniXi,1≤k≤n.By the weak convergence theorem of the weighted sums of random variances and via Borel-Cantelli lemma under some suitable conditions,we discussed the almost sure central limit theorem for weighted sums Sn,n of non-stationary bounded α-weak dependence random variances.
出处
《吉林大学学报(理学版)》
CAS
CSCD
北大核心
2011年第1期79-81,共3页
Journal of Jilin University:Science Edition
基金
国家自然科学基金(批准号:10926169)
关键词
几乎处处中心极限定理
加权和
α-弱相依
非平稳序列
almost sure central limit theorem
weighted sums
α-weak dependence
non-stationary sequence