期刊文献+

α-弱相依序列加权和的几乎处处中心极限定理 被引量:3

Almost Sure Central Limit Theorem for Weighted Sums under α-Weak Dependence
下载PDF
导出
摘要 设{Xn,n≥1}为一零均值有界的α-弱相依序列,满足∞∑i=1θi<∞;{αni,1≤i≤n,n≥1}为一实值三角阵列;令Sn,k=k∑i=1αniXi,1≤k≤n.利用随机变量加权和的弱收敛定理与Borel-Cantelli引理,在适当的假设条件下,给出了非平稳有界的α-弱相依序列加权和Sn,n的几乎处处中心极限定理. Let {Xn,n≥1} be a sequence of bounded α-weak dependence random variances with zero means and ∞∑i=1θi∞,and {ani,1≤i≤n,n≥1} be a triangular array of real numbers,and assume that Sn,k=k∑i=1αniXi,1≤k≤n.By the weak convergence theorem of the weighted sums of random variances and via Borel-Cantelli lemma under some suitable conditions,we discussed the almost sure central limit theorem for weighted sums Sn,n of non-stationary bounded α-weak dependence random variances.
作者 刘君
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2011年第1期79-81,共3页 Journal of Jilin University:Science Edition
基金 国家自然科学基金(批准号:10926169)
关键词 几乎处处中心极限定理 加权和 α-弱相依 非平稳序列 almost sure central limit theorem weighted sums α-weak dependence non-stationary sequence
  • 相关文献

参考文献10

  • 1Brosamler G A. An Almost Everywhere Central Limit Theorem [ J ]. Math Proc Cambridge Philos Soc, 1988, 104: 561-574.
  • 2Schatte P. On Strong Versions of the Central Limit Theorem [J]. Math Nachr, 1988, 137( 1 ) : 249-256.
  • 3张勇,董志山,赵世舜.相依序列加权和的几乎处处中心极限定理[J].数学物理学报(A辑),2009,29(6):1487-1491. 被引量:5
  • 4Gonchigdanzan K, Rempala G A. A Note on the Almost Sure Limit Theorem for the Product of Partial Sums [ J]. Appl Math Lett, 2006, 19(2) : 191-196.
  • 5LI Yun-xia, WANG Jian-feng. An Almost Sure Central Limit Theorem for Products of Sums under Association[J].Statist Probab Lett, 2008, 78 (4) : 367-375.
  • 6Doukhan P, Louhichi S. A New Weak Dependence Condition and Applications tO Moment Inequalities [ J]. Stoch Proc Appl, 1999, 84(2): 313-342.
  • 7Rosenblatt M. A Central Limit Theorem and a Strong Mixing Condition [J]. Proc Nat Acad Sci USA, 1956, 42(1):43 -47.
  • 8Coulon-Prieur C, Doukhan P. A Triangular Central Limit Theorem under a New Weak Dependence Condition [J].Statist Probab Lett, 2000, 47(1) : 61-68.
  • 9Peligrad M, SHAO Qi-man. A Note on the Almost Sure Central Limit Theorem for Weakly Dependent Random Variables [J]. Statist Probab Lett, 1995, 22(2) : 131-136.
  • 10Billingsley P. Convergence of Probability Measures [ M ]. New York : Wiley, 1968.

二级参考文献13

  • 1Brosamler G A. An almost everywhere central limit theorem. Math Proc Cambridge Philos Soc, 1988, 104:561-574.
  • 2Schatte P. On strong versions of the central limit theorem. Math Nachr, 1988, 137:249-256.
  • 3Gonchigdanzan K, Rempala G. A note on the almost sure limit theorem for the product of partial sums. Appl Math Lett, 2006, 19:191-196.
  • 4Li Y X, Wang J F. An almost sure limit theorem for products of sums under association. Statist Probab Lett, 2008, 78:367-375.
  • 5Joag-Dev K, Proschan F. Negative association of random variables with applications. Ann Statist, 1983, 11:286-295.
  • 6Esary J D, Proschan F, Walkup D W. Association of random variables with applications. Ann Math Statist, 1967, 38:1466-1474.
  • 7Roussas G G. Positive and Negative Dependence with Some Statistical Application. Asymptotics, Non- parametrices and Time Series. New York: Marcel Dekker, 1999:757-788.
  • 8Gonchigdanzan K. Almost sure central limit theorems for strongly mixing and associated random variables. Int J Math Sci, 2002, 29(3): 125-131.
  • 9Li Y X, Wang J F. Asymptotic distribution for products of sums under dependence. Metrika, 2007, 66: 75-87.
  • 10Liang H Y, Zhang D X, Baek J. Convergence of weighted sums for dependent random variables. J Korean Math Soc, 2004, 41:883-894.

共引文献4

同被引文献22

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部