期刊文献+

基于小波域HMT的图像杂波抑制方法

Image Clutter Suppression Method Based on Wavelet Domain HMT
下载PDF
导出
摘要 针对复杂背景下红外微弱点状运动目标的检测,提出一种基于小波域HMT模型的图像杂波抑制方法。对图像小波系数低频部分建立隐马尔可夫树模型,使用Bayesian准则估计图像背景小波系数,参照杂波抑制模型,得到杂波抑制后图像的信号加噪声模型,并通过计算Kendall秩相关系数和Friedman统计量验证了该方法残留噪声的高斯性和独立性。 Aiming at the detection of infrared faint blob-shaped moving target under complicated background, this paper presents an image clutter suppression method based on wavelet domain Hidden Markov Tree(HMT). A wavelet-domain HMT model is used to accurately capture the dependencies across low frequency scales. It uses Bayesian criterion to estimate image background wavelet coefficients, refers to clutter suppression model to get clutter suppression image signal noise adding model. Gaussianity and independency of residual noise are also verified by using Kendall rank correlation coefficient and Friedman statistic.
出处 《计算机工程》 CAS CSCD 北大核心 2011年第2期215-217,共3页 Computer Engineering
关键词 杂波抑制 小波变换 隐马尔可夫树模型 Kendall秩相关系数 Friedman统计量 clutter suppression wavelet transform Hidden Markov Tree(HMT) model Kendall rank correlation coefficient Friedman statistic
  • 相关文献

参考文献6

二级参考文献29

  • 1[1]Crouse M S,Nowak R D,Baraniuk R G. Wavelet-Based Statistical Signal Processing Using Hidden Markov Models. IEEE Trans. on Signal Processing, 1998, 46(4): 886~ 902
  • 2[2]Dempster A P,Laird N M,Rubin D B. Maximum Likelihood from Incomplete Data via the EM Algorithm. Journal of the Royal Statistical Society, Series B, 1977,39:1 ~ 38
  • 3[3]Mallat S. A Wavelet Tour of Signal Processing. San Diego: Academic Press, 1998
  • 4[4]Mallat S, Zhong S. Characterization of Signals from Multiscale Edges. IEEE Trans. on Pattern Recognition Machine Intelligence,1992,14(7): 710~732
  • 5DONOHO DL, JOHNSTONE IM.Ideal spatial adaptation via wavelet shrinkage[J]. Biometrika, 1994, 81(12): 425-455.
  • 6DONOHO DL. De-noising by soft-thresholding[J]. IEEE Trans. on Information Theory, 1995, 41(3): 613-627.
  • 7CROUSE MS, NOWAK RD, BARANIUK RG.Wavelet-based signal processing using hidden Markov models[J]. IEEE Trans. on Signal Processing, 1998, 46(4): 886-902.
  • 8CROUSE MS, NOWAK RD, BARANIUK RG. Contextual hidden Markov models for wavelet-domain signal processing[A]. Proc. 31th Asilomar Conf. Signals, Systems, and Computers, Pacific Grove, CA, Nov. 1997.
  • 9FAN G, XIA XG. Wavelet-based texture analysis and synthesis using hidden Markov models[J]. IEEE Trans. Circuits and Systems-Part I, 2003, 50(1): 106-120.
  • 10FAN G, XIA XG. A joint multi-context and multiscale approach to bayesian image segmentation[J]. IEEE Tran. on Geoscience and Remote Sensing, 2001, 39(12): 2680-2688.

共引文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部