期刊文献+

个性化图像推荐及可视化研究 被引量:2

Research on Personalized Image Recommendation and Visualization
下载PDF
导出
摘要 传统图像检索系统中的图像标注与视觉特征存在语义鸿沟现象、未考虑图像标注的潜在语义联系,且检索界面显示效果不佳、个性化程度不高。针对上述问题,提出一种融合图像标注语义与图像视觉特征的个性化图像推荐模型。分析图像标注语义之间的关系,采用双曲空间和庞加莱磁盘模型进行图像可视化。实验结果证明,该模型具有可行性和有效性。 Traditional image retrieval system has the semantic gap between image's labeling and visual characteristic. These systems do not consider the image lbeling's latent semantic relations, and consider the personalization little. In view of these questions, this paper proposes a new personalization image recommendation method. It uses the image's labeling semantics and vision characteristic to analyze the image, and uses the hyperbolic model to display the image. Through the multianalysis of the semantics relation in image and the original data of image, a prototype system is implemented, and this model is proved feasibility and validity.
出处 《计算机工程》 CAS CSCD 北大核心 2011年第2期221-223,226,共4页 Computer Engineering
关键词 个性化 图像推荐 双曲显示 可视化 personalized image recommendation hyperbolic display visualization
  • 相关文献

参考文献6

  • 1邓涛,郭雷,杨卫莉.基于本体的图像语义标注与检索模型[J].计算机工程,2008,34(17):188-190. 被引量:11
  • 2林霜梅,汪更生,陈弈秋.个性化推荐系统中的用户建模及特征选择[J].计算机工程,2007,33(17):196-198. 被引量:45
  • 3Leacock C, Chodorow M, Miller G A. Combining Local Context and WordNet Similarity for Sense Identification[M]//Fellbaum C. WordNet: An Electronic Lexical Database. Cambridge, USA: MIT Press, 1998: 265-283.
  • 4Fan Jianping, Keim D A, Gao Yuli, et al. Personalized Image Recommendation via Exploratory Search from Large-Scale Flickr Image Collections[J]. IEEE Trans. on Circuits and Systems for Video Technology, 2008, 18(8): 1-19.
  • 5卫颖奇,彭进业.一种基于混合模型的特征提取方法[c]//第3届全国嵌入式技术和信息处理联合学术会议论文集.昆明:[出版者不详],2009.
  • 6Gao Yuli, Fan Jianping, Luo Hangzai, et al. A Novel Approach for Filtering out Junk Images from Google Search Results[C]//Proc. of Int'l Conf. on Multimedia Modeling. Kyoto, Japan: Is. n.], 2008.

二级参考文献9

  • 1Fischer G,Stevens C.Information Access in Complex,Poorly Structured Information Spaces[C]//Proc.of the CHI'91 Conference Proceedings.1991:63-70.
  • 2Middleton S E,Shadbolt N R.Ontological User Profiling in Recommender Systems[J].ACM Transactions on Information Systems,2004,22(1):54-88.
  • 3Debole F,Sebastiani F.Supervised Term Weighting for Automated Text Categorization[C]//Proceedings of the ACM Symposium on Applied Computing.2003:784-788.
  • 4Yang Y,Pedersen J.A Comparative Study on Feature Selection in Text Categorization[C]//Proceedings of the 14th International Conference on Machine Learning.1997:412-420.
  • 5Schreiber A, Dubbeldam B, Wielemaker J. Ontology-based Photo Annotation[J]. IEEE Intelligent Systems, 2001, 16(3): 66-74.
  • 6Maillot N, Thonnat M. Towards Ontology-based Cognitive Vision[J]. Machine Vision and Applications, 2004, 16(1):33-40.
  • 7Papadopoulos G T, Panagi E A Learning Approach to Semantic Image Analysis[C]//Proc. of the Communications Conf.. Alghero, Italy: [s. n.], 2006.
  • 8Cohn A G, Hazarika S M. Qualitative Spatial Representation and Reasoning: An Overview[J]. Fundamental Informatics, 2001, 46(1/2): 1-29.
  • 9应晓敏,刘明,窦文华.一种面向个性化服务的无需反例集的用户建模方法[J].国防科技大学学报,2002,24(3):67-71. 被引量:16

共引文献54

同被引文献18

  • 1Hill W, Stead L, Rosenstein M. Recommending and Evaluat- ing Choices in a Virtual Community of Use[C]//Proc. of SIGCHI Conference on Human Factors in Computing Systems New York, USA: ACM Press, 1995: 194-201.
  • 2Hachul S, Jiinger M. Drawing Large Graphs with a Potential- field-based Multilevel Algorithm[C]//Proc. of the 12th International Conference on Graph Drawing. New York, USA: Springer, 2004: 285-295.
  • 3Fruchterman T M J, Reingold E M. Graph Drawing by Force-directed Placement[J]. Software: Practice & Experience, 1991, 21(11): 1129-1164.
  • 4Zhou Weihua, Huang Jingwei. A Fast Multi-level Algorithm for Drawing Large Undirected Graphs[C]//Proc. of International Conference on Internet Computing in Science and Engineering. Harbin, China: [s. n.], 2008:110-117.
  • 5Perer A, Shneiderman B. Integrating Statistics and Visuali- zation: Case Studies of Gaining Clarity During Exploratory Data Analysis[C]//Proc. of SIGCHI Conference on Human Factors in Computing Systems. Florence, Italy: ACM Press, 2008: 265-274.
  • 6Koop D, Scheidegger C, Callahan S, et al. VisComplete: Automating Suggestions for Visualization Pipelines[J]. IEEE Transactions on Visualization and Computer Graphics, 2008, 14(6): 1691-1698.
  • 7Duval E. Attention Please!: Learning Analytics for Visuali- zation and Recommendation[C]//Proc. of the 1st International Conference on Leaming Analytics and Knowledge. Banff, Canada: ACM Press, 2011 : 9-17.
  • 8Jeffrey H. Vizster: Visualizing Online Social Networks[C]// Proc. of IEEE Symposium on Information Visualization. Minneapolis, USA: IEEE Press, 2005: 32-39.
  • 9Cmovrsanin T, Liao I, Wu Yingcai, et al. Visual Recom- mendations for Network Navigation[C]//Proc. of the 13th Eurographics/IEEE-VGTC Conference on Visualization. Bergen, Norway: IEEE Press, 2011 : 1081-1090.
  • 10Liang Gou, Fang You, Jun Guo, et al. SFViz: Interest-based Friends Exploration and Recommendation in Social Networks[C]//Proc. of 2011 international Symposium on Visual Information Communication. Hong Kong, China: ACM Press. 2011: 15-18.

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部