期刊文献+

基于ST图的微循环血细胞自动跟踪与测量技术 被引量:2

Automatic tracking and measurement of blood cells motion in microcirculation based on ST image
下载PDF
导出
摘要 为了有效分析微循环中血细胞的运动,利用血管中心线生成ST图,通过提取ST图中的轨迹,实现对血细胞的自动跟踪与测量.首先,设计出多尺度的方向滤波器,对ST图进行增强预处理;然后,在分析增强图像的概率密度分布函数和方向角度的基础上,设计了噪声滤波函数和方向滤波函数以提取细胞轨迹;最后,对提取的轨迹细化并计算其方向,实现对细胞的跟踪和流速测量.分别对人体微循环中的红细胞和白细胞进行跟踪与测量,跟踪的正确率达到96.5%以上,误差率小于1%.将流速测量结果与人工测量结果相比较,平均相关系数为0.98,高于现有的测量方法,表明该方法能更有效地分析和测量微循环中血细胞的运动. In order to analyze the blood cells motion in microcirculation effectively,a spatiotemporal(ST) image is generated according to the centerline of the blood vessel,and the blood cells tracking and measurement is realized by extracting the traces on the ST image.Firstly,a multi-scale directional filter is designed for ST image enhancement.Then,with the analysis of the probability density and the orientations of the enhanced image,the noise suppression function and the orientation filtering function are designed for extracting the traces.Finally,by thinning the extracted traces and calculating the orientations,the blood cells tracking and velocity measurement are realized.The red blood cells(RBCs) and leukocytes in microcirculation are taken as the experimental targets.The correct-tracking rate is more than 96.5% while false-tracking rate is less than 1%.Comparing the velocity measurement results with the manual evaluation,the average correlation coefficient is 0.98,which is higher than the existing method.The results show that the novel method can analyze and measure the blood cells motion in microcirculation more efficiently.
出处 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2011年第1期72-76,共5页 Journal of Southeast University:Natural Science Edition
基金 国家自然科学基金资助项目(10172043) 教育部博士点基金资助项目(20040287012)
关键词 微循环 细胞跟踪 流速测量 时空图 microcirculation cells tracking velocity measurement spatiotemporal image
  • 相关文献

参考文献13

  • 1Angelis D, Grassi R W, Cutolo M. A growing need for capillaroscopy in rheumatology [ J]. Arthritis and Rheu- matism, 2009, 61(3) : 405 -410.
  • 2葛云,章东.活体细胞图像斑点的自动提取和跟踪方法[J].东南大学学报(自然科学版),2009,39(3):464-467. 被引量:4
  • 3Tsukada K, Minamitani H, Sekizuka E, et al. Image correla- tion method for measuring blood flow velocity in microcirculation: correlation window simulation and in vivo image analy- sis [ J ]. Physiological Measurement, 2000, 21 (4) : 459 - 464.
  • 4Mukherjee D, Ray N, Acton S. Level set analysis for leukocyte detection and tracking [ J ]. IEEE Transac- tions on Image Processing, 2004, 13 (4) : 562 - 572.
  • 5Sourice A, Plantier G, Saumet J. Red blood cell veloci- ty estimation in microvessels using the spatiotemporal autocorrelation [ J ]. Measurement Science and Technol- ogy, 2005, 16 ( 11 ) : 2229 - 2239.
  • 6Dobbe J G G, Streekstra G J, Atasever B, et al. Measure- ment of functional microcirculatory geometry and velocity distributions using automated image analysis [ J ]. Medical Biologic Engineer Computer, 2008, 46(7): 659-670.
  • 7Drew P J, Pablo B, Gert C, et al. Rapid determination of particle velocity from space-time images using the Radon transform [ J ]. Journal of Computational Neuro- science, 2010, 29(1) : 1 -7.
  • 8Shahidi M, Wanek J, Gaynes B, et al. Quantitative assess- ment of conjuncfival microvascular circulation of the human eye [ J ]. Microvascular Research, 2010, 79(2) : 109 - 113.
  • 9Sato Y, Jian C, Reza A Z, et al. Automatic extraction and measurement of leukocyte motion in microvessels using spatiotemporal image analysis [ J ]. IEEE Transactions on Biomedical Engineering, 1997, 44(4) : 225 - 236.
  • 10Ray N, Acton S. Data acceptance for automated leu- kocyte tracking through segmentation of spatiotemporal images [ J ]. IEEE Transactions on Biomedical Engi- neering, 2005, 52(10) : 1702 - 1712.

二级参考文献12

  • 1Muresan Leila,Heise Bettina,Klement Erich Peter.Tracking fluorescent spots in wide-field microscopy images[C]//Proc of SPIE-IS&T Electronic Imaging.San Jose,USA,2006,6070:203-212.
  • 2Meijedng Erik,Small IHor,Danuser Gaudenz.Tracking in molecular bioimaging[J].IEEE Signal Processing Magazine,2006,23(3):46-53.
  • 3Ehrlich Marcelo,Boll Werner,van Oijen Antoine,et al.Endocytosis by random initiation and stabilization of Clathrin-coated pits[J].Cell,2004,118(5):591-605.
  • 4Zhou X.Dynamic sub-cellular behavior study in high content imaging using a novel approach[C]//Proc IEEE conf Circuit and Systems.Kobe,Japan,2005,5:4787-4790.
  • 5Sbalzarini I F,Koumoutsakos P.Feature point tracking and trajectory analysis for video imaging in cell biology[J].Journal of Structural Biology,2005,151(2):182-195.
  • 6Bright X,Steel E B.Two-dimensional top hat filter for extracting spots and spheres from digital images[J].J Microsc,1987,146(2):191-200.
  • 7Olivo-Marin Jean-Christophe.Extraction of spots in bioogical images using multiscale products[J].Pattern Recognition,2002,35(9):1989-1996.
  • 8Olivo J-C.Automatic detection of spots in biological images by a wavelet-based selective filtering technique[C]//Proceeding of IEEE Third International Conference on Image Processing.Lausanne,Switzerland,1996:311-314.
  • 9Veenman C J.Resolving motion correspondence for densely moving points[J].IEEE Transaction on Pattern Analysis and Machine Intelligence,2001,23(1):54-72.
  • 10Sethi Ishwar K,Jain Ramesh.Finding trajectories of feature points in a monocular image sequence[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1987,9(1):56-73.

共引文献3

同被引文献20

  • 1丁益洪,平西建,胡敏.基于随机Hough变换的深度图像分割[J].计算机辅助设计与图形学学报,2005,17(5):902-907. 被引量:13
  • 2Subudhi B N,Nanda P K,Ghosh A. A change information based fast algorithm for video object detection and tracking[J].IEEE Transactions on Circuits and Systems for Video Technology,2011,(07):993-1004.
  • 3Jazayeri A,Hongyuan Cai,Jiang Yu Zheng. Vehicle detection and tracking in car video based on motion model[J].IEEE Transactions on Intelligent Transportation Systems,2011,(02):583-595.
  • 4Yao Fenghui,Sekmen A,Malkani M J. Multiple moving target detection.tracking,and recognition from a moving observer[A].New York,2008.978-983.
  • 5Rowe D,Reid I,Gonzalez J. Unconstrained multiplepeople tracking[A].Beilin:Springer-Verlag,2006.505-514.
  • 6Blanding W R,Willett P K,Bar-Shalom Y. Multiple target tracking using maximum likelihood probabilistic data association[A].Big Sky,2007.1-12.
  • 7Pan P,Schonfeld D. Dynamic proposal variance and optimal particle allocation in particle filtering for video tracking[J].IEEE Transactions on Circuits and Systems for Video Technology,2008,(09):1268-1279.
  • 8Angelova D,Mihaylova L. Extended object tracking using monte carlo methods[J].IEEE Transactions on Signal Processing,2008,(02):825-832.doi:10.1109/TSP.2007.907851.
  • 9赵建军,熊馨,张磊,付腾,赵龑骧.基于CLAHE和top-hat变换的手背静脉图像增强算法[J].激光与红外,2009,39(2):220-222. 被引量:9
  • 10郑可飚,黄文清,张佐理,李艳芳.运动目标跟踪系统的遮挡问题处理[J].计算机工程与设计,2009,30(11):2816-2818. 被引量:6

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部