期刊文献+

多自由度仿生假手嵌入式控制系统及其抓取策略 被引量:3

Embedded Control System for Multi-DOF Anthropomorphic Prosthetic Hand and Its Grasping Strategy
下载PDF
导出
摘要 为一种能够实现5指独立动作以及具备人机交互能力的多自由度仿生假手设计了手部嵌入式控制系统.该系统由传感器系统和运动控制系统构成,集成于假手机体内部,通过通信总线与上层控制器交换信息.传感器系统包括3种类型,共12个传感器,可为假手自主抓取以及人机交互中的感觉反馈提供数据,运动控制系统用于控制、驱动各手指动作.此外,本文以基于位置的阻抗控制为底层,以动作预构形为上层设计了分层控制策略.实验表明,该嵌入式控制系统和分层控制策略使假手实现了自主抓取功能,提高了抓取的柔顺性、稳定性和适应性. An embedded control system is designed for a kind of multi-DOF anthropomorphic prosthetic hands with five individually driven fingers and the capability of man-machine interaction.The proposed system is composed of sensory system and motion control system.They are all integrated in the body of prosthetic hand.To exchange information,the communication bus is used between the hand and the upper controller.Three kinds,a sum of 12 sensors are equipped both for automatic grasp control and for sensory feedback during man-machine interaction.The function of driving and controlling the motion of the fingers is supported by the motion control system.Furthermore,a kind of hierarchical control strategy is presented.The position based impedance control works as the low level and the feature pre-shape works as the high level. The experimental results show that,by the support of the embedded control system and the hierarchical control strategy,the prosthetic hand realizes automatic grasp,and its grasping compliance,stability and suitability are improved.
出处 《机器人》 EI CSCD 北大核心 2011年第1期22-27,共6页 Robot
基金 国家863计划资助项目(2009AA043803 2008AA04Z203) 新世纪优秀人才支持计划资助项目(NCET-09-0056)
关键词 嵌入式控制系统 仿生假手 预构形 阻抗控制 自主抓取 embedded control system anthropomorphic prosthetic hand pre-shape impedance control automatic grasp
  • 相关文献

参考文献14

  • 1Otto Bock Healthcare GmbH. MYOBOCK-Armprothesen [DB/OL]. [2010-04-08]. http://www.ottobock.com.
  • 2Touch Bionics Inc. i-LIMB hand brochure[DB/OL]. [2010-04- 08]. http://www.touchBionics.com.
  • 3Carrozza M C, Cappiello G, Micera S, et al. Design of a cybernetic hand for perception and action[J]. Biological Cybernetics, 2006, 95(6): 629-644.
  • 4Pons J L, Rocon E, Ceres R, et al. The MANUS-HAND dextrous robotics upper limb prosthesis: Mechanical and manipulation aspects[J]. Autonomous Robots, 2004, 16(2): 143-163.
  • 5Yoshida M, Sasaki Y. Sensory feedback system for prosthetic hand by using interferential current[C]//Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Piscataway, N J, USA: IEEE, 2001:1431-1432.
  • 6汤奇荣,姜力,李楠,杨大鹏,刘宏.肌电假手感觉反馈机理研究[J].传感器与微系统,2008,27(8):72-74. 被引量:6
  • 7Cipriani C, Zaccone F, Micera S, et al. On the shared control of an EMG-controlled prosthetic hand: Analysis of userprosthesis interaction[J]. IEEE Transactions on Robotics, 2008, 24(1): 170-184.
  • 8Cipriani C, Controzzi M, Vecchi F, et al. Embedded hardware architecture based on microcontrollers for the action and perception of a transradial prosthesis[C]//IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics. Piscataway, NJ, USA: IEEE, 2008: 848-853.
  • 9Cipriani C, Controzzi M, Carrozza M C. Progress towards the development of the SmartHand transradial prosthesis[C]//IEEE International Conference on Rehabilitation Robotics. Piscataway, NJ, USA: IEEE, 2009: 682-687.
  • 10Arieta A H, Katoh R, Yokoi H, et al. Development of a multi- DOF electromyography prosthetic system using the adaptive joint mechanism[J]. Applied Bionics and Bio-mechanics, 2006, 3(2): 101-111.

二级参考文献11

  • 1Gao Xiaohui, Shi Shicai, Zhao Dawei. HIT anthropomorphic robotic hand and finger motion control [J]. Journal of Harbin Institute of Technology, 2006, 13 (1) .49 -51.
  • 2Zhao Jingdong, Xie Zongwu, Jiang Li, et al. Levenbergmarquardt based neural network control for a five-fingered prosthetic hand [ C ] //Proceedings of the 2005 IEEE International Conference on Robotics and Automation. Barcelona: IEEE, 2005:4482 - 4487.
  • 3Bitzer S, Smagt P. Learning EMG control of a robotic hand : towards active prostheses [ C ]//Proceedings of the 2006 IEEE International Conference on Robotics and Automation. Orlando, Florida: IEEE, 2006:2819 -2823.
  • 4Cortes C,Vapnik V. Support-vector network [ J]. Machine Learning, 1995, 20:273 - 297.
  • 5Vapnik V. Statistical Learning Theory [ M ]. New York : Wiley, 1998.
  • 6and the methods Science, training [R]. A study on sigmoid kernels for SVM of non-PSD kernels by SMO-type Taiwan : Department of Computer National Taiwan University, 2003
  • 7Ana Carolina Lorena, Andr'e C P L F de Carvalho. Comparing techniques for multiclass classification using binary SVM predictors [ C 1//Third Mexican International Conference on Artificial Intelligence. Germany, Heidelberg : Springer, 2004 (2972) : 272 - 281.
  • 8卢祖能.实用肌电图学[M].北京:人民卫生出版社,2002.291-327.
  • 9Vinet R, Lozach Y, Beaudry N. Design methodology for a multifunctional prosthesis hand [ J ]. J Rehab Res and Development, 1995,32 (4) :316 -324.
  • 10Allegro MicroSystems Inc. A3901 Dual full bridge low voltage motor driver[ M ]. Datasheet Allegro,2007:1 -2.

共引文献9

同被引文献6

引证文献3

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部