期刊文献+

一种改进的基于图的图像分割方法 被引量:5

An Improved Graph-based Image Segmentation Method
下载PDF
导出
摘要 提出一种改进的基于图的分割方法。该方法重新定义了边权重函数、判定函数等度量函数,然后利用判定函数来判别区域间的边界,从而完成分割。该方法能兼顾全局和局部特征,从而更好的度量区域内部的差别和区域之间的差别,具有了更快的分割速度。实验表明,改进的方法具有更好的效率。 An improved segmentation method is proposed.The definitions of metric functions including weight function of edges and determination function are given firstly.The determination function is used to find out the borderline between regions,and then the segmentation is performed based on the borderline.By redefining the metric function and combining global features with local features,the improved method has better measurement of interior difference and exterior difference,and has higher speed as well.The experimental results show that the improved method is more efficient than existing one.
作者 张田
出处 《西华大学学报(自然科学版)》 CAS 2011年第1期61-64,共4页 Journal of Xihua University:Natural Science Edition
基金 国家自然科学基金重点项目(60832008)
关键词 图像分割 度量函数 image segmentation graph metric function
  • 相关文献

参考文献11

  • 1Abraham Duarte, Angel Sanchez,Felipe Fernandez, et al. Improving hnage Segmentation Quality through Effective Region Merging Using a Hierarchical Social Met Heuristic [ J ]. Pattern Recognition Letters, 2006 (27) : 1239-1251.
  • 2Liu X, Wang D. Image and Texture Segmentation Using Local Spectral Histograms [J]. IEEE Transactions on Image Processing, 2006, 15 (10) : 3066-3077.
  • 3Ho SY, Lee K Z. Design and Analysis of an Efficient Evolutionary Image Segmentation Algorithm [J]. The Journal of VLSI Signal Processing, 2003, 35( 1 ) : 29-42.
  • 4汪西莉,焦李成.基于多尺度马尔可夫随机场的图像分割[J].计算机科学,2003,30(7):174-176. 被引量:4
  • 5Leahy R. An Optimal Graph Theoretic Approach to Data Clustering: Theory and its Application to hnage Segmentation [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1993, 15 (11) : 1101-1113.
  • 6Shi J, Malk J. Normalized Cuts and Image Segmentation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2000, 22 (8) : 888- 905.
  • 7Ding C, He X, Zha H, et al. A Min-max Cut Algorithm for Graph Partitioning and Data Clustering[ C ] //Proceedings of IEEE International Conference on Data Mining. San Jose :IEEE,2001 : 107- 114.
  • 8Veksler O. Image Segmentation by Nested Cuts [ C ] / / Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition. Hihon Head Island :IEEE,2000: 339-344.
  • 9Li X, Tian Z. Optimum Cut-based Clustering [J]. Signal Processing, 2007, 87 (11): 2491- 2502.
  • 10Pedro F Felzenszwalb, Daniel P Huttenlocher. Efficient Graph-based Image Segmentation [ J ]. International Journal of Computer Vision, 2004, 59(2) : 167-181.

二级参考文献6

  • 1Krishnamachari S, Chellapa R. Multiresolution Gauss-Markov random field models for texture segmentation. IEEE Transactions on Image Processing, 1997,6(2) :251-267.
  • 2Basseville M,Benveniste A,Chou K C,et al. Modeling and estimation of multiresolution stochastic processes. IEEE Transactions on Information Theory, 1992, 38(3):766-784.
  • 3Laferte J-M, Perez P, Heitz F. Discrete Markov image modeling and inference on the quadtree. IEEE Transactions on Image Processing,2000,9 (3) : 390-404.
  • 4Bouman C A, Shapiro M. A multiscale random field model for Bayesian image segmentation. IEEE Transactions on Image Processing, 1994,3(2) : 162-177.
  • 5Crouse M S,Nowak R D,Baraniuk R G. Wavelet-based statistical signal processing using hidden Markov models. IEEE Transactions on Signal Processing, 1998,46(4) : 886- 902.
  • 6Dempster A P,Laird N M,Rubin D B. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society Series B, 1977,39(1) : 1 -38.

共引文献3

同被引文献56

  • 1王兴元,骆超.二维Logistic映射的分岔与分形[J].力学学报,2005,37(3):346-355. 被引量:18
  • 2王红梅,张科,李言俊.一种基于PCNN的图像分割方法[J].光电工程,2005,32(5):93-96. 被引量:13
  • 3马义德,齐春亮.基于遗传算法的脉冲耦合神经网络自动系统的研究[J].系统仿真学报,2006,18(3):722-725. 被引量:50
  • 4Duarte A, Sanchez A, Fernandez F, et al. Montemayor Improving Image Segmentation Quality Through Effective Region Merging Using a Hierarchical Social Met Heuristic[J]. Pattern Recognition Letters, 2006, 27(11): 1239-1251.
  • 5Liu Xuyweng, Wang Deliang. Image and Texture Segmentation Using Local Spectral Histograms[J]. IEEE Transactions on Image Processing, 2006, 15(10): 3066-3077.
  • 6Ho S Y, Lee K Z. Design and Analysis of an Efficient Evolutionary Image Segmentation Algorithm[J]. The Journal of VLSI Signal Processing, 2003, 35(1): 29-42.
  • 7Leahy R. An Optimal Graph Theoretic Approach to Data Clustering: Theory and Its Application to Image Segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1993, 15(11): 1101-1113.
  • 8Shi Jianbo, Malk J. Normalized Cuts and Image Segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(8): 888-905.
  • 9Ding C, He Xiaofeng, Zha Hongyuan, et al. A Min-max Cut Algorithm for Graph Partitioning and Data Clustering[C]// Proceedings of IEEE International Conference on Data Mining. San Jose, USA: IEEE Press, 2001: 107-114.
  • 10Veksler O. Image Segmentation by Nested Cuts[C]//Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition. Hilton Head Island, USA: IEEE Press, 2000: 339-344.

引证文献5

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部