期刊文献+

基于低非线性系数光子晶体光纤的全光纤高效超连续谱光源 被引量:5

All-fiber high-conversion-efficiency supercontinuum source based on photonic crystal fiber with low nonlinear coefficient
下载PDF
导出
摘要 报道了一种基于低非线性系数光子晶体光纤的全光纤高效率超连续谱产生系统。将光纤锁模激光器输出的脉宽5 ps、重复频率20 MHz、平均功率50 mW的脉冲,输入到15μm的大模场光纤中进行放大,通过与两级芯径较小的短光纤模场匹配缩小输出的模场直径后,输入到20 m低非线性系数的光子晶体光纤,获得的超连续谱波长覆盖范围宽于650-1 700 nm。输入光子晶体光纤的泵浦光功率为740 mW,输出超连续光功率为670 mW,转换效率大于90%。实验研究了超连续光谱展宽的过程,从理论上进行了分析解释。 An all-fiber high-efficiency supercontinuum source based on photonic crystal fiber with low nonlinear coefficient was demonstrated.The pulse train with 5 ps duration,20 MHz repetition rate,and 50 mW average power output from a mode locked fiber laser was amplified by a 15 μm-diameter large mode fiber amplifier.The output fiber of the amplifier was mode-matched to the photonic crystal fiber using two pieces of short fibers with narrower mode diameter.By pumping the 20 m long low nonlinear coefficient phontonic crystal fiber,a supercontinuum with wavelength extension over 650~1 700 nm was obtained.The output power of the generated supercontinuum was 670 mW pumped by 740 mW input amplified pulses,which implies a conversion efficiency over 90%.The supercontinuum generation process was also experimentally studied and analyzed.
出处 《强激光与粒子束》 EI CAS CSCD 北大核心 2011年第1期31-34,共4页 High Power Laser and Particle Beams
基金 国家高技术发展计划项目
关键词 光子晶体光纤 超连续谱 全光纤 转换效率 photonics crystal fiber supercontinuum all fiber conversion efficiency
  • 相关文献

参考文献12

  • 1Dudley J M, Genty G, Coen S. Supercontinuum generation in photonic crystal fiber[J]. RevMod Phys,2006,78:1135-1184.
  • 2Islam M N, Sucha G, Bar-Joseph I, et al. Broad bandwidths from frequency shifting solitons in fibers[J]. Opt Lett,1989,14:370-372.
  • 3Ranka J K, Windeler R S, Stentz A J. Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm[J]. Opt Lett ,2000,25:25-27.
  • 4Coen S, Chau A H L, Leonhardt R, et al. Whitelight supercontinuum generation with 60-ps pump pulses in a photonic crystal fiber[J]. Opt Lett,2001,26:1356-1358.
  • 5Blanch A O, Knight J C, Russell P S J. Pulse breaking and supercontinuum generation with 200 fs pump pulses in photonic crystal fibers [J]. J Opt Sew Am B,2002,19(11):2567-2572.
  • 6Kumar R K, George A K, Reeves W H, et al. Extruded soft glass photonic crystal fiber for uhrabroad supereontinuum generation[J]. Opt Express,2002,10(25):1520-1525.
  • 7Chang G Q, Norris T B, Winful H G. Optimization of supercontinuum generation in photonic crystal fibers for pulse compression[J]. Opt Lett .2003,28(7) :546-548.
  • 8Savitski V G, Yumashev K V, Kalashnikov V L, et al. Infrared supercontinuum from a large mode area PCF under extreme picosecond exci- tation[J]. Opt Quant Electron ,2007,39:1297-1309.
  • 9Cumberland B A, TraversJ C, Popov SV, et al. 29 W high powerCW supercontinuum source[J].Opt Express,2008,16(8):5954-5962.
  • 10Travers J C, Rulkov A B, Cumberland B A, et al. Visible supercontinuum generation in photonic crystal fibers with a 400 W continuous wave fiber laser[J]. Opt Express ,2008,16(19) : 14435-14447.

二级参考文献39

  • 1张巍,张磊,陈实,蔡青,黄翊东,彭江得.高非线性光子晶体光纤与单模光纤低损耗熔接实验[J].中国激光,2006,33(10):1389-1392. 被引量:16
  • 2Affano R R. The supercontinuum laser source[M]. 2nd ed. New York , Springer-Verlag, 2006.
  • 3Dudley J M, Genty G, Coen S. Supercontinuum generation in photonic crystal fiber[J].Rev Mod Phys, 2006, 78:1135-1184.
  • 4Islam M N, Sueha G, Bar-Joseph I, et al. Broad bandwidths from frequency-shifting solitons in fibers[J]. Opt Lett, 1989, 14(7) :370-372.
  • 5Chang Guoqing, Norris T B, Winful H G. Optimization of supercontinuum generation in photonic crystal fibers for pulse compression[J]. Opt Lett, 2003, 28(7) :546-548.
  • 6Birks T A, Wadsworth W J, Russell P S J. Supercontinuum generation in tapered fibers[J]. Opt Lett, 2000, 25(19) :1415-1417.
  • 7Ranka J K, Windeler R S, Stentz A J. Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm[J]. OptLett, 2000, 25(1) :25-27.
  • 8Blanch A O, Knight J C, Russell P S J. Pulse breaking and supercontinuum generation with 200-fs pump pulses in photonic crystal fibers[J]. JOpt SocAm B, 2002, 19(11) :2567-2572.
  • 9Kumar R K, George A K, Reeves W H, et al. Extruded soft glass photonie crystal fiber for ultrabroad supercontinuum generation[J]. Opt Express, 2002, 10(25) :1520-1525.
  • 10Coen S, Chau A H L, Leonhardt R, et al. Whitelight supercontinuum generation with 60-ps pump pulses in a photonic crystal fiber[J]. Opt Lett, 2001, 26(17) :1356-1358.

共引文献20

同被引文献40

  • 1黄小军,彭翰生,魏晓峰,王晓东,曾小明,周凯南,郭仪,刘兰琴,王逍,朱启华,林东晖,唐晓东,张小民,楚晓亮,王清月.100 TW级超短超强钛宝石激光装置[J].强激光与粒子束,2005,17(11):1685-1688. 被引量:15
  • 2方宏,娄淑琴,任国斌,郭铁英,简水生.非均匀孔径光子晶体光纤的模式截止[J].中国激光,2006,33(4):493-498. 被引量:10
  • 3楼祺洪,周军,朱健强,王之江.高功率光纤激光器研究进展[J].红外与激光工程,2006,35(2):135-138. 被引量:69
  • 4张亚妮,任立勇,王丽莉,苗润才.高双折射光子晶体保偏光纤研究进展[J].量子电子学报,2006,23(5):577-582. 被引量:6
  • 5张巍,张磊,陈实,蔡青,黄翊东,彭江得.高非线性光子晶体光纤与单模光纤低损耗熔接实验[J].中国激光,2006,33(10):1389-1392. 被引量:16
  • 6Morioka T, Takara H, Kawanishi S, et al. Polarisation-independent all-optical demultiplexing up to 200 Gbit/s using four-wave mixing in a semiconductor laser amplifier[J]. Electron Lett, 1996, 32:906-907.
  • 7Cundiff S T, Ye J, Hall J L. Optical frequency synthesis based on mode-locked lasers[J]. RevSci Instrum, 2001, 72:3749-3771.
  • 8Jones D J, Diddams S A, Ranka J K, et al. Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis[J]. Science, 2000, 288:635-639.
  • 9Hartl I, Li X D, Chudoba C, et al. Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica micro- structure optical fiber[J]. Opt Lett, 2001, 26:608-610.
  • 10Serebryannikov E E, Goulielmakis E, Zheltikov A M. Generation of supercontinuum compressible to single-cycle pulse widths in an ionizing gas[J]. New Journal of Physics, 2009 :093001.

引证文献5

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部