期刊文献+

中厚板轧制力自学习过程层别跳变的自整定方法 被引量:3

Self-adjusting for Plate Thickness Layer Skipping in Rolling Force Learning Process
下载PDF
导出
摘要 在中厚板轧制力预报过程中,为防止自学习系数沿着厚度层别发生跳变,提出了中厚板轧制力自学习过程层别跳变的自整定方法.针对厚度层别表中的每一个厚度节点计算其半宽带,然后根据半宽带计算厚度节点的有效区域,最后找到当前轧制厚度的有效区域并确定它所对应厚度节点的权值,从而得出自整定后的自学习系数.实际应用结果表明,应用该方法后轧制力的预报精度及板形控制效果有了很大的提高和改善,具有良好的应用价值. In the prediction process of rolling force for plates,to prevent the self-learning coefficient from the skipping along thickness layers,a self-adjusting method was put forward in the self-learning process of the rolling force for medium/thick plates.In the method the half-width zone was calculated according to every thickness node as listed in the table of thickness layers,then the range of validity of a thickness node was calculated according to half-width zone so as to find out the validating range of the thickness during rolling and determine the weighted value corresponding to the relevant thickness node,thus giving the self-learning coefficient after self-adjusting.Practical applications showed that the method proposed is available to improve the prediction accuracy of rolling force and plate shape control greatly and worthy to apply to plate rolling.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2011年第1期64-66,71,共4页 Journal of Northeastern University(Natural Science)
基金 国家自然科学基金资助项目(50104004)
关键词 中厚板 自整定 层别跳变 自学习 轧制力 medium/thick steel plate self-adjusting thickness layer skipping self-learning rolling force
  • 相关文献

参考文献10

  • 1Ziarko W. Variable precision rough set model[J ]. Journal of Computer and Sciences, 1993,46(1) :39 - 59.
  • 2Ishii T, Wada S, Miyokawa M, et al. Recent technology in hot strip mill [C] //Proceedings of the 7th International Conference on Steel Rolling. Tokyo: The Iron and Steel Institute of Japan, 1998:711 - 716.
  • 3Guilandoust M T, Morris A J, Tham M T. An adaptive estimation algorithm for inferential control [ J ]. lnd Eng Chem Res, 1988,27:1658- 1664.
  • 4Ramoni M, Sebastiami P. Robust Bayes classifiers [ J ]. Artificial Intelligence, 2001,125(l/2) :209 - 226.
  • 5Quintero-Marmol E, Luyben W L, Georgakis C. Application of an extended Luenberger observer to the control of multicomponent batch distillation [ J ]. Ind Eng Chem Res, 1991,30(8):1870 -1880.
  • 6Guilandoust M T, Morris A J, Tham M T. Adaptive inferential control [ J ]. IEEE Trans Automatic Control, 1987,134(3) : 171 - 179.
  • 7Sato C, Ohtani T, Nishitani H. Modeling, simulation and nonlinear control of a gas-phase polymerization process [ J ]. Computers Chem Engng, 2000,24 (2/3/4/5/6/7) : 945 - 951.
  • 8Evans R D, Andermn D E, Zanni J M, et al. Plate mill automation at U.S. Steel, Gary Works[J]. Iron and Steel Engineer, 1993,70(3) :44 - 49.
  • 9Murphy T M, Johns R L. On-line plate mill process control computer replacement [J]. Iron and Steel Engineer, 1993, 70(6) :23 - 24.
  • 10Heesen G J, Burggraaf D H. New process control system of Hoogovens' hot strip mill: key to improved product quality [J]. Ironmaking and Steelmaking, 1991, 18 (3): 190 - 195.

同被引文献29

  • 1余万华,韩静涛,刘勇,佘广夫,张芮,张中平.一种新型实用热轧工艺参数模型的开发[J].北京科技大学学报,2006,28(5):461-463. 被引量:4
  • 2杨贵玲,白彦,郭立平,郭宏伟,李龙,丁桦.济钢热连轧厂轧制力数学模型优化的可行性分析[J].材料与冶金学报,2006,5(4):304-307. 被引量:3
  • 3丁修垫,张殿华,王贞祥.高精度板带钢厚度控制的理论与实践[M].北京:冶金工业出版社,2009.
  • 4Gardner E S. Exponential smoothing: The state of the art-Part II[J]. International Journal of Forecasting, 2006, 22(4): 637-666.
  • 5Taylor J W. Exponential smoothing with a damped multiplicative trend[J]. International Journal of Forecasting, 2003, 19(4): 715-725.
  • 6刘文仲.热轧生产自动化技术[M].北京:冶金工业出版社,2006:200-220.
  • 7Wang J S,Jiang Z Y,Tieu A K, et al.Adaptive calculation of deformation resistance model of online process control in tandem cold mill [J].Journal of Materials Processing Technology, 2005,162/163:585-590.
  • 8Lee D M,Lee Y S.Application of neural-network for improving accuracy of roll-force model in hot rolling mill [J].Control Engineering Practice,2002,10(4):473-478.
  • 9Lee D M,Choi S G.Application of on-line adaptable neural network for the rolling force set-up of a plate mill [J].Engineering Applications of Artificial Intelligence,2004,17(5):557-565.
  • 10Larkiola J,Myllykoski P,Nylander J,et al.Prediction of rolling force in cold rolling by using physical models and neural computing [J].Journal of Materials Processing Technology,1996,60(1/2/3/4):381-386.

引证文献3

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部