期刊文献+

零频数过多模型在亚健康状态研究中的应用 被引量:3

Application of zero-inflated models on regression analysis of count data: a study of sub-health symptoms
原文传递
导出
摘要 探讨零频数过多(ZI)模型在亚健康症状数研究中的应用.应用Stata 11.0软件拟合ZI模型分析亚健康症状数的危险因素,并用d系数、Vuong检验、O检验、似然比拟合优度检验比较ZI模型与传统负二项回归模型、Poisson回归模型的拟合效果.α=0.939,Vuong检验Z=32.08,P<0.0001,表明此数据的零频数过多.亚健康症状数的(-x)=2.90,s=3.85,过度离散统计量0=308.011,P<0.001,s2>(-x),表明存在过度离散.从4个模型中的拟合优度看,零频数过多的负二项回归(ZINB)模型log likelihood最大,AIC最小,说明ZINB模型的拟合效果最佳.当计数资料中出现过多的零频数时(如亚健康症状数资料),应用ZINB模型能够获得最佳的拟合效果. To explore the goodness of fit about the zero-inflated (ZI) models in analyzing data related to sub-health symptoms in which the counts are non-negative integers. ZI models are conducted with Stata 11.0. The coefficient of a, Vuong test, O test and likelihood test are used to compare the goodness of fit for ZI models with the common used models such as passion model,negative binomial model. When a is 0.939, and the Z statistic of Vuong test is 32.08, P〈0.0001,which shows that there are too many zeros. The mean number of sub-health symptoms is 2.90, s=3.85, 0=308.011, P〈0.001, s2〉(-x), indicating that the data are over-dispersed. In addition, the optimum goodness of fit is found in zero-inflated negative binomial (ZINB) model with the largest log likelihood and the smallest AIC. ZINB seems the optimal model to study those over-dispersed count data with too many zeros.
出处 《中华流行病学杂志》 CAS CSCD 北大核心 2011年第2期187-191,共5页 Chinese Journal of Epidemiology
关键词 亚健康 零频数过多模型 负二项回归 POISSON回归 Sub-health Zero-inflated model Negative binomial regression Poisson regression
  • 相关文献

参考文献10

二级参考文献24

共引文献341

同被引文献37

  • 1沈修建,吕继涛.刚性悬挂接触网设计若干技术问题探讨[J].电气化铁道,2004(3):25-26. 被引量:16
  • 2曾平,刘桂芬,曹红艳.零膨胀模型在心肌缺血节段数影响因素研究中的应用[J].中国卫生统计,2008,25(5):464-466. 被引量:21
  • 3刘昌英,曾小军,姜唯声,陈红根,洪献林,胡神助,杭春琴,谢曙英.蛔虫重度流行区实施不同化疗措施后人群再感染的观察[J].中国病原生物学杂志,2006,1(6):449-451. 被引量:7
  • 4Lambert D. Zero-inflated poisson regression, with an application to defects in manufacturing [ J]. Technometrics, 1992,34 ( ! ) : 1- 14.
  • 5Vuong Q. Likelihood ratio tests for model selection and non-nested hypothesis [ J ]. Econometrica, 1989,57 (2) :307-333.
  • 6Greene WH. Accounting for Excess Zeros and Sample Selection in Poisson and Negative Binomial Regression Models [ EB/OL]. ( 199405-01 ) [ 2013-01-01 ]. http ://papers. ssrn. corn/soB/pa- pers. cfm? abstract_id = 1293115##.
  • 7Brooker S, Bethony J, Hotez PJ. Human hookworm infection in the 21st century[J]. Adv Parasitol, 2004, 58: 197-288.
  • 8Utzinger J, Bergquist R, Olveda R, et al. Important helminth in- fections in Southeast Asia diversity, potential for control and prospects for elimination[J]. Adv Parasitol, 2010, 72: 1-30.
  • 9Schad GA, Anderson RM. Predisposition to hookworm infection in humans[J]. Science, 1985, 225(4707): 1537-1540.
  • 10Haswell-Elkins M, Elkins D, Anderson R. Evidence for predispo- sition in humans to infection with Ascaris, hookworm, Enterobius and Trichuris in a South Indian fishing community[J]. Parasitolo- gy, 1987, 95(Pt 2): 323-337.

引证文献3

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部