期刊文献+

菲涅耳波带板应用于聚变靶的高分辨X射线成像分析 被引量:7

Analysis of high-resolution X-ray imaging of an inertial-confinement-fusion target by using a Fresnel zone plate
原文传递
导出
摘要 在惯性约束核聚变研究中,为了实现1μm高空间分辨keV-X射线成像,文中发展了菲涅耳波带板(FZP)直接成像的分析方法,并通过数值计算研究了FZP的成像特性.针对钛Kα线(光子能量4.51keV,波长0.275nm),提出了FZP参数,对制作技术的要求较低.研究了靶尺度的影响.FZP的有效视场使它能够对数毫米大尺度靶实现高分辨成像.还研究了入射光的光谱带宽对成像的影响.FZP的色差有助于单色成像,但是带宽超过限度会导致像的反衬度降低.这些结果表明FZP应用于聚变点火靶的高空间分辨X射线成像的能力,也为应用提出了要求. Aiming at 1 μm high resolution in imaging an inertial confinement fusion ( ICF) target,a method is developed for analyzing the direct imaging by a Fresnel zone plate (FZP),and numerical calculations are carried out to study the FZP imaging characteristics in the keV X-ray range. For the Ti Kα line (photon energy 4. 51 keV,wavelength 0. 275 nm),the FZP parameters are suggested,for which the technical requirement of fabricating the outmost zone is relatively low. The influence of the target size on the imaging is studied for the first time. It is shown that the FZP has a large effective field of view and the image quality can be guaranteed even for a target of several millimeters. The influence of the spectral bandwidth of a polychromatic incident light on the imaging is also studied. Monochromatic imaging can be obtained due to the achromatic property of the FZP. However,if the bandwidth is larger than a certain limit,the image contrast will be degraded. These results indicate the feasibility of applying an FZP in high-resolution X-ray imaging of an ICF ignition target and put forward the requirements as well.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2011年第2期489-495,共7页 Acta Physica Sinica
基金 国家高技术研究发展计划(批准号:2008AA8041206) 中国科学院知识创新工程(批准号:KJCXZ-YW-N28,KJCX2-YW-N36)资助的课题~~
关键词 X射线成像 惯性约束核聚变 菲涅耳波带板 X-ray imaging inertial confinement fusion Fresnel zone plate
  • 相关文献

参考文献15

  • 1Lindl J D, Amendt P, Berger R L, Glendinning S G, Glenzer S H, Haan S W, Kauffman R L, Landen O L, Sute L J 2004 Phys. Plasmas 11 339.
  • 2Marshall F J, Bennett G R 1999 Rev. Sci. Instrum. 70 617.
  • 3Aglitskiy Y, Lehecka T, Obenschein S, Bodner S, Pawley C, Gerber K, Sethian J, Brown C M, Seely J, Feldman U, Holland G 1998 Appl. Opt. 37 5253.
  • 4Koch J A, Aglitskiy Y, Brown C, Cowan T, Freeman R, Hatchett S, Honand G, Key M, MacKinnon A, Seely J, Snavely R, Stephens R 2003 Rev. Sci. lnstrum. 74 2130.
  • 5Chao W, Harteneck B D, Liddle J A, Anderson E H, Attwood D T 2005 Nature 435 1210.
  • 6Tian Y C, Li W, Chen J, Liu L, Liu G, Tkaehuk A, Tian J, Xiong Y, Gelb J, Hsu G, Yun W 2008 Rev. Sci. Instrum. 79 103708.
  • 7Azechi H, Tamari Y, Shiraga H 2003 Institute of Laser Engineering Annual Reports ( Osaka : Osaka University) p100.
  • 8董建军,曹磊峰,陈铭,谢常青,杜华冰.微聚焦菲涅尔波带板聚焦特性研究[J].物理学报,2008,57(5):3044-3047. 被引量:6
  • 9Stigliani D J, Mittra R, Semonin R G 1967 J. Opt. Soc. Am. 57 610.
  • 10Kirz J 1974 J. Opt. Soc. Am. 64 301.

二级参考文献15

共引文献11

同被引文献43

  • 1Lindl J D, Amendt P, Berger R L, et al. The physics basis for ignition using indirect-drive targets on the National Ignition Facility[J]. Phys Plasmas, 2004, 10(2): 339-491.
  • 2Fujioka S, Shiraga H, Nishikino M, et al. First observation of density profile in directly laser-driven polystyrene targets ablative for Ray- leigh-Taytor instability research[J]. Phys Plasmas, 2003, 1 1 (12) : 4784-4789.
  • 3Marshall F J, Bennett G R. A high-energy X-ray microscope for inertial confinement fusion[J]. Rev Sci Instrum, 1999, 70(1): 617-619.
  • 4Aglitskiy Y, Leheeka T, Obenschain S, et al. High-resolution monochromatic X-ray imaging system based on spherically bent crystals[J]. ApplOpt, 1998, 37(22): 5253-5261.
  • 5Koch J A, Aglitskiy Y, Brown C, et al. 4.5- and 8-keV emission and absorption X-ray imaging using spherically bent quartz 203 and 211 crystals[J]. Rev Sci Instrum, 2003, 74(3): 2130-2135.
  • 6Jefimovs K, Vila-Comamala J, Pilvi T, et al. Zone-doubling technique to produce ultrahigh-resolution X-ray optics[J]. Phys Rev Lett, 2007, 99: 26480.
  • 7Chao W, Kim J, Rekawa S, et al. Hydrogen silsesquioxane double patterning process for 12 nm resolution X-ray zone plates[J], J Vac Sci Technol B, 2009, 27(6): 2606 -2611.
  • 8Cauchon G, Pichet-Thomasset M, Sauneuf R, et al. Imaging of laser produced plasma at 1.43 keV using Fresnel zone plate and Bragg Fresnellens[J]. RevSciInstrum, 1998, 69(9): 3186- 3193.
  • 9Azechi H, Tamari Y, Shiraga H. Frontiers in X-ray optical components for high-resolution spectroscopy and imaging high-spatial resolu- tion imaging by Fresnel zone plate[J]. J Plasma Fusion Res, 2003, 79(4): 398-401.
  • 10Born M, Wolf E. Principles of optics: Electromagnetic theory of propagation, interference and diffraction of light[M]. Cambridge: Cam bridge University Press, 1999.

引证文献7

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部