期刊文献+

银纳米颗粒减反射特性的理论研究 被引量:4

Theoretical investigation of anti-reflection properties of Ag-nanoparticles
原文传递
导出
摘要 为增强晶体硅太阳电池的光利用效率,提高光电转换效率,研究了金属银纳米颗粒的光学散射性质.基于银纳米粒子表面等离子激元效应和MIE散射理论,采用Matlab数值计算,理论分析了不同银纳米颗粒尺寸和银粒子分布密度对太阳光谱各波长的散射特性.获得了实现高的光透过率所需最佳银纳米颗粒半径范围,研究发现随着银纳米颗粒半径增加,偶极峰红移、高极峰逐渐出现.定量地给出了最佳颗粒分布密度随银粒子半径的变化规律,建立了计算减反射膜透射率的理论方法,找到了银纳米颗粒光学透过率的简单函数表达式,能为实验研究提供理论指导. In order to trap more sunlight onto the crystalline silicon solar cell and improve the photo-electric conversion efficiency,it is very important to study the optical scattering properties of silver nanoparticles on silicon wafer. Based on localized surface plasmon effect and MIE scattering theory, using numerical calculation by Matlab, the scattering properties of solar spetra for different radius and density of silver nanoparticle are investigated in theory. The dependence of the optimal optical transmittance on the radius and density of Ag nanoparticle is obtained. Furthermore,it is found that the dipole peaks is redshifted and high mode peaks gradually emerges. Firstly this paper gives the variation of the best Ag nanoparticle density with the radius quantitively,the theoretical method calculating the transmittance of the nanoparticle antireflection film is also established. As a result,the simple functional expression of transmittance is deduced in this work,which provides a theoretical guidance for experimental research.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2011年第2期621-625,共5页 Acta Physica Sinica
基金 上海应用材料国际科技合作基金(批准号:08520741400) 上海市优秀学科带头人计划(批准号:08XD14022)资助的课题~~
关键词 银纳米颗粒 透过率 MIE理论 太阳电池 Ag-nanoparticles transmittance MIE theory solar cells
  • 相关文献

参考文献2

二级参考文献20

  • 1郑俊娟,孙刚.周期地嵌入电介质球壳的金属表层的表面等离子激元及其与电介质腔体模式的耦合[J].物理学报,2005,54(6):2751-2757. 被引量:6
  • 2Raether H 1988 Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Berlin: Springer-Verlag) pp37-40.
  • 3Jensen T R, Malinsky M D, Haynes C L, Van Duyne R P 2000 J. Phys. Chem. B 104 10549.
  • 4Haynes C L, Van Duyne R P 2003 J. Phys. Chem. B 107 7426.
  • 5Galletto P, Brevet P F, Girault H H, Antoine R, Broyer M 1999 J. Phys. Chem. B 103 8706.
  • 6Zou S, Weaver M J, Li X Q, Ren B, Tian Z Q 1999 J. Phys, Chem. B 103 4218.
  • 7Kneipp J, Kneipp H, McLaughlin M, Brown D, Kneipp K 2006 Nano Lett. 6 2225.
  • 8Kohler J M, Csaki A, Reichert J, Moiler R, Straube W, Fritzsche W 2001 Sensor Actuat. B 76 166.
  • 9Andersen P C, Rowlen K L 2002 Appl. Spectrosc. A 56 124.
  • 10Taton T A, Mirkin C A, Letsinger R L 2000 Science 289 1757.

共引文献20

同被引文献36

  • 1王翔,余彦清,褚家如.二维微纳米结构表面反射特性的时域有限差分法模拟研究[J].光子学报,2012,41(2):159-165. 被引量:13
  • 2波恩,沃尔夫.光学原理[M].北京:电子工业出版社,2006.197-205.
  • 3Harry A, Atwater, Albert Polman. Plasmonics for improved photovoltaic devices[J]. Nat Mater, 2010,9 (3) : 205.
  • 4Imogen M Pryce, et al. Plasmonic nanoparticle enhanced pho- tocurrent in GaN/InGaN/GaN quantum well solar cells[J]. Appl Phys Lett, 2010,96 (15) : 153501.
  • 5Inomata Y, et al. Surface texturing of large area multicrys- talline silicon solar cells using reactive ion etching method [J]. Solar Energy Mater Solar Cells, 1997,48 (1-4) : 237.
  • 6Rahul Dewan, Marko Marinkovic, Rodrigo Noriega, et al. Light trapping in thin-film silicon solar cells with submicron surface texture[J]. Opt Express,2009,17(25):23058.
  • 7Yang Y, et al. Enhanced light trapping for high efficiency crystalline solar cells by the application of rear surface plas- mons[J]. Solar Energy Mater Solar Cells, 2012,101 : 217.
  • 8Tan Hairen, et al. Plasmonic light trapping in thin-film sili- con solar cells with improved self-assembled silver nanopar- ticles[J]. Nano Lett, 2012,12(8) : 4070.
  • 9Ulrich W Paetzold, et al. Plasmonic back contacts with no- nordered Ag nanostructures for light trapping in thin-film silicon solar cells[J]. Mater Sci Eng B,2013,178(9):630.
  • 10Beck F J, Mokkapati S, Catchpole K R. Plasmonic light- trapping for Si solar cells using self-assembled, Ag nanopar- ticles[J]. Prog Photovolt: Res Appl, 2010,18(7) 500.

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部