期刊文献+

含有整体刚体位移杆件系统的几何非线性分析 被引量:6

GEOMETRIC NONLINEAR ANALYSIS OF TRUSS SYSTEMS WITH RIGID BODY MOTIONS
原文传递
导出
摘要 许多杆件系统中,结构和机构共同存在。应用现有有限元理论很难分析这些杆件系统的几何非线性效应。该文引入多组坐标:总体坐标系、物体坐标系、单元坐标系、节点坐标系和截面坐标系,介绍了一种含刚体位移杆件系统几何非线性效应的共转坐标方法。该文假设梁单元交叉节点为刚性连接,即:节点坐标系和截面坐标系之间的坐标转换矩阵始终不变,明确了杆件结构中节点转动的概念。并且依据有限转动理论,推导出物体在单元坐标系和总体坐标系下的变形转换关系,有效的分解了物体的大转动、大变形效应。进而列出了大变形分析的非线性残量方程。另外,该文用多体系统动力学处理约束的方法,建立了具有复杂边界条件结构的增广约束方程。最后,给出4个算例,验证了所述方法的可行和正确性以及约束增广法处理约束的有效性。 Many truss systems are both structures and mechanisms.So it is hard to solve these problems using the classical FEM theory.Aiming at dealing with the geometric nonlinear effect of these systems,this paper presents a co-rotational method using a series of coordinate systems which include global coordinate,body-fixed coordinate,element coordinate,node coordinate and section coordinate.It is supposed that the cross-section nodes are rigidly connected,namely the transformation matrix between the node coordinate and the section coordinate is invariable,thus the rotational concept is clearer.Subsequently,the deformational conversion relationship between element coordinate and global coordinate is attained based on the finite rotation theory,and it is shown that the large rotation and deformation are appropriately converted into small strain effect.Then,the nonlinear formulation of the residual forces is obtained.In addition,this paper gives a new augmented constraint method which is widely used in multi-body dynamics to deal with complicated displacement boundary conditions.Finally,four numerical examples are given to verify the method of this paper.
出处 《工程力学》 EI CSCD 北大核心 2011年第2期62-68,共7页 Engineering Mechanics
基金 国家自然科学基金项目(10972044) 973计划项目(2006CB705400)
关键词 几何非线性 杆件系统 共转法 刚体位移 有限转动 约束增广法 geometric nonlinearity truss structure co-rotational method rigid body motion finite rotation augmented constraint method
  • 相关文献

参考文献10

  • 1陈至达.杆板壳大变形理论[M].北京:科学出版社,1996.68~74.
  • 2Zienkiewicz O C, Taylor R L. The finite element method: Basic formulation and linear problems [M]. London: McGraw-Hill, 1990.
  • 3Felippa C A, Haugen B. A unified formulation of small strain corotational finite elements: I. Theory [J]. Computer Methods Applied Mechanics and Engineering, 2005, 194: 2285-2335.
  • 4Crisfield M A. A consistent co-rotational formulation for nonlinear three-dimensional beam element [J]. Computer Methods Applied Mechanics and Engineering, 1990, 81(2): 131-150.
  • 5Crisfield M A, Moita G F. A unified co-rotational framework for solids, shells and beams [J]. International Journal of Solids and Structures, 1996, 33: 2969-2992.
  • 6Li Z X. A co-rotational formulation for 3D beam element using vectorial rotational variables [J]. Computational Mechanics, 2007, 39(3): 309-322.
  • 7周凌远,李乔.基于UL法的CR列式三维梁单元计算方法[J].西南交通大学学报,2006,41(6):690-695. 被引量:20
  • 8刘放尧,孟茁超.用共旋坐标有限元法分析高层建筑框架结构的二阶效应[J].湖南城市学院学报(自然科学版),2007,16(1):1-5. 被引量:1
  • 9吕和祥,朱菊芬,马莉颖.大转动梁的几何非线性分析讨论[J].计算结构力学及其应用,1995,12(4):485-490. 被引量:35
  • 10韩来彬.MATLAB有限元分析与应用[M].北京:清华大学出版社.2004.

二级参考文献20

  • 1梁启智.高层建筑结构分析与设计[M].华南理工大学出版社,1991..
  • 2邵旭东,蔡松柏,沈蒲生,张阳.NFEM中荷载增量法和位移增量法的统一迭代格式[C].工程与科学中的计算力学/中国计算力学大会2003论文集,北京:河北音像教育出版社,2003.244~247.
  • 3ARGYRIS J H. An excursion into large rotations [ J ]. Computer Methods in Applied Mechanics and Engineering, 1982,32(5) : 85-155.
  • 4RANKIN C C, BROGAN F A. An element independent eorotational procedure for the treatment of large rotations [ J ], Journal of Pressure Vessel Technology, 1986,108: 165-174.
  • 5CRISFIELD M A, MOITA G F. A unified co-rotational framework for solids, shells and beams[ J ]. International Journal of Solids and Structures, 1996,33(24) : 2 969-2 992.
  • 6HSIAO K, LIN W Y. Co-rotational finite element formulation for buckling and postbuckling analyses of spatial beams[ J ].Computer Methods in Applied Mechanics and Engineering, 2000,188 (3):567-594.
  • 7FELIPPA C A, HAUGEN B. A unified formulation of small-strain corotational finite elements [ J ]. Theory Computer Methods in Applied Mechanics and Engineering, 2005,194(19) : 2 285-2 335.
  • 8BATHE K J, RAMM E, WILSON E L. Finite element formulations for large deformation dynamic analysis [ J ]. International Journal of Numerical Methods and Engineering, 1975,9 (2) : 353-386.
  • 9BATHE K J. An assessment of current finite element analysis of nonlinear problems in solid mechanics [ C ]//Numerical Solution of Partial Differential Equations. Maryland: University of Maryland, 1975.
  • 10BATHE K J, BOLOURCHI S. Large displacement analysis of three-dimensional beam structures[ J ]. International Journal of Numerical Methods and Engineering, 1979,14 ( 7 ) : 961-986.

共引文献52

同被引文献45

  • 1周慎杰,王锡平,李文娟,王凯.履带起重机臂架有限元分析方法[J].山东大学学报(工学版),2005,35(1):22-26. 被引量:11
  • 2吕和祥,朱菊芬,马莉颖.大转动梁的几何非线性分析讨论[J].计算结构力学及其应用,1995,12(4):485-490. 被引量:35
  • 3蔡松柏,沈蒲生.大转动平面梁有限元分析的共旋坐标法[J].工程力学,2006,23(A01):69-72. 被引量:29
  • 4GB50011-2008,建筑抗震设计规范[s].
  • 5GB50010-2002.混凝土结构设计规范[S].[S].北京:中国建筑工业出版社,2002..
  • 6Xiao N, Zhong H. Non-linear quadrature element analysis of planar frames based on geometri-cally exact beam theory[J]. International Journal of Non-Linear Mechanics, 2012, 47(5) : 481-488.
  • 7Felippa C A, Haugen B. A unified formulation of small-strain corotational finite elements- I : theory[ J]. Computer Methods in Applied Mechanics and Engineering, 2005, 194(21 ): 2285-2335.
  • 8Li Z X. A co-rotational formulation for 3D beam element using vectorial rotational variables [J]. Computational Mechanics, 2007, 39(3 ): 309-322.
  • 9Hsiao K M, Lin J Y, Lin W Y. A consistent co-rotational finite element formulation for geo- metrically nonlinear dynamic analysis of 3-D beams [ J ]. Computer Methods in Applied Me- chanics and Engineering, 1999, 169( 1 ) : 1-18.
  • 10Haefner L, Willam K J. Large deflection formulations of a simple beam element including shear deformations[J]. Engineering Computations, 1984, 1(4) : 359-368.

引证文献6

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部