期刊文献+

转弯半径对引水式水电站弯道排冰影响的数值模拟 被引量:3

NUMERICAL SIMULATION OF EFFECT OF TURNING RADIUS ON ICE REMOVAL IN BEND CHANNEL OF DIVERSION TYPE POWER HOUSE
原文传递
导出
摘要 水电站引水渠道中的冰害会影响水电站的安全运行,危害当地人民的人身安全,因此,输排冰运行方式的成败便成为引水式水电站冬季安全运行的关键所在。建立了三维非稳态欧拉两相流模型,在水流流动过程冰的动量源项中考虑了相间曳力、升力、虚拟质量力的作用,以及密度差的影响。模拟分析了不同转弯半径对弯道排冰的影响,结果表明:转弯半径为200m时弯道内的水流平缓,流速分布较均匀,排冰闸前的浮冰量最大,排冰量最大,冰水比相对较大,排冰效果最好。可知,转弯半径200m时为最佳布置形式,从而实现了对弯道输排冰的布置形式进行合理的优化设计,以达到顺利输排冰,保证冬季安全运行的目的。通过与Blanckaert所做的弯道冲淤试验水槽实验结果对比,验证了模型的可靠性。 The ice damage of diversion channel is dangerous to the hydropower station operation,even results in great life losses,so the operation mode of the ice delivery and sluicing is key to diversion-type hydropower station in winter.A 3D unsteady Eulerian two-phase model is developed.The momentum transfer term includes the drag,virtual mass,lift forces,and density difference.The results under different turning radius are as follows: When the turning radius is 200m,the water flow is steady,the water velocity distribution is homogeneous,the amount of floating ice reaches its maximum,and the ice removal efficiency is the highest.Therefore,the optimum turning radius is 200m,and the reasonable design of ice gate can ensure the smooth removal of ice and the safety operation of hydropower station.The prediction by the present model for ice removal of bend channel is confirmed by the experimental results of open channel bend reported by Blanckaert.
出处 《工程力学》 EI CSCD 北大核心 2011年第2期152-158,共7页 Engineering Mechanics
基金 国家重点基础研究发展计划(973计划)项目(2007CB714101) 国家自然科学基金项目(50879053) 天津市应用基础及前言技术研究计划项目(09JCYBJC08700)
关键词 转弯半径 弯道排冰 三维非稳态欧拉两相流 引水式水电站 浮冰 turning radius ice removal of bend channel 3D unsteady Eulerian two-phase flow diversion canal type hydropower station floating ice
  • 相关文献

参考文献14

二级参考文献48

共引文献173

同被引文献33

  • 1王晓玲,张自强,李涛,安娟.引水流量对引水渠道中水内冰演变影响的数值模拟[J].水利学报,2009,39(11):1307-1312. 被引量:22
  • 2JI Shunying,SHEN Hung Tao,WANG Zhilian,SHEN H Hayley,YUE Qianjin.A viscoelastic-plastic constitutive model with Mohr-Coulomb yielding criterion for sea ice dynamics[J].Acta Oceanologica Sinica,2005,24(4):54-65. 被引量:10
  • 3SL 211-2006 水工建筑物抗冰冻设计规范[S].
  • 4SHEN H T. Mathematical modeling of river ice processes[J]. Cold Regions Science and Technology, 2010, 62( 1 ) : 3-13.
  • 5KOLERSKI T, SHEN H T, KIOKA S A. Numerical model study on ice boom in a coastal lake [J]. Journal of Coastal Research, 2014,29(6) :177-186.
  • 6IPPEN AT, DRINKER P. Boundary shear stresses in curved trapezoidal channels [J]. Journal of Hydraulics Division, ASCE, 1962, 88(HY5): 143-179.
  • 7王军,高月霞,尹运基,郭力文,赵慧敏.弯槽段冰塞形成及其厚度分布的试验研究[J].冰川冻土,2007,29(5):764-769. 被引量:10
  • 8Shen H T, Su J, Liu L. SPH simulation of river ice dynamics [J]. Journal Computational Phys, 2000, 165(2): 752-771.
  • 9Fu C, Popescu I, Wang C, et al. Challenges in modelling river flow and ice regime on the Ningxia-Inner Mongolia reach of the Yellow River, China [J]. Hydrology and Earth System Sciences, 2014, 18(3): 1225-1337.
  • 10SHEN Hung Tao. Mathematical modeling of river ice processes [J]. Cold Regions Science and Technology, 2010, 62(1): 3-13.

引证文献3

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部