期刊文献+

基频约束下的桁架结构半定规划法拓扑优化 被引量:7

TRUSS TOPOLOGY OPTIMIZATION WITH FUNDAMENTAL FREQUENCY CONSTRAINTS VIA SEMI-DEFINITE PROGRAMMING
原文传递
导出
摘要 大型复杂结构出现重频时该频点处不具有通常意义下的导数信息,基于灵敏度分析的优化算法遇到很大困难。若优化模型存在平衡方程等式约束,则为非凸优化,很难找到全局最优解。对此该文以桁架结构为研究对象,采用半定规划法建立了以结构系统体积和基频为约束,以柔度最小为目标的凸优化模型。通过将柔度和基频构造成半定矩阵的形式,将传统优化模型转化为半定规划模型。该模型将杆件横截面积和柔度均视为优化变量,模型的特点是在求解过程中不必计算特征值的灵敏度,对有无重频问题均适用。数值算例表明采用半定规划法处理重频优化问题是正确可行的。 It is difficult to calculate the sensitivity coefficients of multiple eigenvalues for large complex structures due to lack of usual differentiability with respect to a design variable,and the equilibrium equation constraints if exists in the model will lead to nonconvex programming.Consequently the global optimum is difficult to find.To avoid this intractable issue,this paper presents a new optimization model for truss structures.The optimized problem is formulated as compliance minimization with volume and fundamental frequency constraints via semidefinite programming(SDP),and the compliance and fundamental frequency in traditional models are casted as semidefinite matrix constraints,both the cross section and compliance are viewed as variables.In this way,the sensitivity coefficients of multiple eigenvalues are circumvented.The SDP model is applicable both to single and multiple eigenvalues.The theoretical results and the practical use of this model are illustrated by examples at the end of the paper.
出处 《工程力学》 EI CSCD 北大核心 2011年第2期181-185,共5页 Engineering Mechanics
关键词 桁架 重频 柔度 拓扑优化 半定规划 truss multiple frequency compliance topology optimization semidefinite programming
  • 相关文献

参考文献11

  • 1Olhoff N, Lurid E, Seyranian P A. Sensitivity analysis and optimization of multiple eigenvalues in structural design problems [J]. AIAA, 1994, 1: 625-640.
  • 2Bendsoe M, Sigmund O. Topology optimization: Theory, methods and applications [M]. 2nd ed. Springer Verlag, Berlin Heidelberg, 2003.
  • 3Seyranian P A, Lund E, Olhoff N. Multiple eigenvalues in structural optimization problems [J]. Structural Optimization, 1994, 8: 207-227.
  • 4章永强,王文亮.广义特征值问题中重特征值的特征向量导数[J].力学学报,1994,26(1):81-89. 被引量:12
  • 5Todd M. Semidefinite optimization [J]. Acta Numenca, 2001, 10: 515-560.
  • 6Ben-Tal A, Nemirovski A, Structural design via Semidefinite Programming [C]//Saigal R, Wolkowitcz H, Vandenberghe Programming. L. Handbook of Semidefinite Norwell Massachusetts: Kluwer Academic Publishers, 2000:443-468.
  • 7E1 Ghaoui L, Calafiore G. Worst-case state prediction under structured uncertainty [C]. San Diego: American Control Conference, 1999, 5: 3402- 3406.
  • 8刘延柱,陈文良.振动力学[M].北京:高等教育出版社,2003.4.
  • 9Koualei M, Terlaky T. On the extension of a mehrotra-type algorithm for semidefinite optimization [R]. Ontario, Canada: McMaster U. Hamilton, 2007.
  • 10Klerk de E. Aspects of semidefinite programming: Interior point algorithms and selected applications [M]. Kluwer Academic Publishers, New York, Boston. Dordrecht, London. Moscow, 2002.

二级参考文献2

  • 1Wei F S,1992年
  • 2蒋尔雄,线性代数,1978年

共引文献18

同被引文献57

引证文献7

二级引证文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部