期刊文献+

双曲传热反问题研究 被引量:2

RESEARCH ON THE INVERSE HYPERBOLIC HEAT CONDUCTION PROBLEMS
原文传递
导出
摘要 该文建立了双曲传热正/反问题求解模型,应用高斯-牛顿方法,对辐射边界进行了识别。空间上采用等参元进行离散,时域上采用时域精细算法进行离散,利用测量信息和计算信息构造最小二乘函数,将多宗量反演识别问题转化为一个优化问题,所建模型可对导热系数和辐射边界等宗量进行有效的单一和组合识别。给出了相关的数值验证,对信息测量误差作了初步探讨。数值结果表明,所建模型能对双曲传热反问题的导热系数和辐射边界条件进行有效的识别,并具有较高的计算精度。 A general numerical model is given to identify parameters of the radiation boundary conditions for inverse hyperbolic heat conduction problems using Gauss-Newton method.The finite element is used for the discretization in the space system and a time stepping scheme is used for transient analysis.The inverse problem is formulated implicitly as an optimization problem with the cost functional of squared residues between calculated and measured quantities.Single and combined identifications can be carried out for thermal parameters and radiation boundary conditions etc.Satisfactory numerical validation is given including a preliminary investigation of effect of noise data on the results.Results show that the proposed numerical model can identify single and combined thermal parameters and radiation boundary conditions for hyperbolic heat conduction problems with precision.
出处 《工程力学》 EI CSCD 北大核心 2011年第2期234-238,共5页 Engineering Mechanics
基金 国家自然科学基金项目(10802015) 辽宁省重点实验室基金项目(2008S036) 工业装备结构分析重点实验室开放基金项目(GZ0811)
关键词 双曲传热 辐射 反问题 多宗量 精细算法 hyperbolic heat conduction radiation inverse problem multi-variables precise algorithm
  • 相关文献

参考文献3

二级参考文献31

  • 1崔凯,杨国伟,李兴斯,李宝元.用同伦方法反演非饱和土中溶质迁移参数[J].力学学报,2005,37(3):307-312. 被引量:12
  • 2刘迎曦,张军,赵文志,孙秀珍.反演在骨生长方程参数识别中的应用[J].力学学报,2005,37(6):805-809. 被引量:5
  • 3俞昌铭.计算热物性参数的导热反问题[J].工程热物理学报,1982,3(4):372-378.
  • 4Stolz G J. Numerical solution to an inverse problem of heat conduction for simple shampes[J]. J. Heat Transfer, 1960, 82(C): 20-26.
  • 5Alifanov O M, Mikhailov V V. Solution of the nonlinear inverse conductivity problem by the iteration method[J]. J. Eng. Phys., 1978, 35(6): 1501-1506.
  • 6Kohn R, Vogelins M. Determining conductivity by boundary measurements[J]. Common Pure Appl. Math, 1984, 137(3): 289-298.
  • 7Goldberg D E. Genetic algorithms in search optimization & machine learning[M]. Reading, MA: Addison Wesley Publishing Company, 1989.
  • 8Eiben A E, Aarts E H, Van Hee K M. Global convergence of genetic algorithms: a infinite markov chain analysis[A]. Schwefel H P, Manner R. Parallel Problem Solving form Nature[C]. Heidelberg, Berlin: Springer-Verlag, 1991. 4-12.
  • 9Tseng AA, Chert TC. Direct sensitivity coefficient method for solving two-dimension inverse heat conduction problems by finite-element scheme. Numerical Heat Transfer Part B, 1995, 27(3): 291-307.
  • 10Abboudi S, Artioukhine E. Simultaneous estimation of two boundary conditions in a two-dimensional heat conduction problem. In: Proceeding of the 5th International Conference on Inverse Problems in Engineering: Theory and Practice, 2005, A01.

共引文献9

同被引文献14

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部