摘要
针对结构损伤识别中,损伤与其影响因素之间的复杂非线性关系,提出了结构损伤识别的支持向量机方法。支持向量机是一种基于统计学理论的机器学习算法,本文以模态频率作为损伤标识量,通过支持向量机建立了损伤程度和频率之间的支持向量机模型,并以悬臂梁的损伤为例进行了计算分析,结果表明提出的方法是科学,可行的。
In allusion to the complex nonlinear relationship between the damage and influencing factors with regard to structural damage detection was proposed damage identification of support vector machines.SVM is a machine learning algorithms based on the statistical theory,we used the modal frequency as the amount of damage in this paper,established the svm-model between the degree of injury and the modal frequency through support vector machine and calculated by an scathing example of cantilever beam.The result shows that the proposed method is scientific and feasible.
出处
《四川建材》
2011年第1期39-40,42,共3页
Sichuan Building Materials
关键词
损伤识别
支持向量机
核函数
模态频率
Damage detection
Support vector machine
Kernel function
Model frequency