期刊文献+

基于multi-agents的网络防卫体系中预警定位系统的研究与实现 被引量:2

An Early Warning and Orientation System in Network Defense Using Multi-Agents
下载PDF
导出
摘要 传统的网络安全措施,如加密认证、防火墙和入侵检测系统等,虽然在保护信息的保密性、完整性、可用性和控制访问方面有一定的效果,但在协同和预警方面依然存在不足。文章提出了1个基于multi-agents的网络安全防卫系统,该系统由协同预警定位系统、协同审计系统、安全隔离系统、事故恢复系统等多个模块构成,模块之间由多个多级分层agents来负责通信任务。系统控制中心的agent server负责控制和协调整个安全体系,制定全网统一的安全控制策略。在该系统中,整个网络被划分成不同级别的分区,建立不同级别的协同预警定位系统,各分区既相互协作,又能够独立自治,通过协作的方式共同维护着整个网络的安全。在IPv6环境下测试的结果表明,该系统可以高效进行预警,IDS的捕获率约为95%、漏报率小于6%、误报率小于7%。 Traditional network security measures,such as encryption and authentication,firewalls and intrusion detection systems,are effective in the protection of information confidentiality,integrity,usability,and control access,but are still deficient in cooperative defense and early warning.We present a network security defense system using multi-agents which consists of a cooperative early warning and orientation module,a cooperative auditing module,a security isolation module,and an accident recovery module etc.Multi-level hierarchical agents are responsible for communication tasks between modules,and the agent server in the control center is responsible for unified control and cooperation of the security of the entire network.The entire network is divided into different levels of partition,and different levels of the collaborative early warning and orientation system are established.Each partition is self-governing,and through mutual cooperation the partitions jointly maintain the security of the whole network.Test results on IPv6 environment show that this system is effective in early warning,and the capture rate of the intrusion detection systems reaches 95%,the missed alarm rate is decreased to 6%,and the false alarm rate is decreased to 7%.
出处 《西北工业大学学报》 EI CAS CSCD 北大核心 2010年第6期952-957,共6页 Journal of Northwestern Polytechnical University
基金 国家科技重大专项课题(2008ZX03006) 国家863高科技研究发展计划(2003AA142060)资助
关键词 MULTI-AGENTS 协同防卫 预警定位 网络防护 multi-agents cooperative defense early warning and orientation network defense
  • 相关文献

参考文献6

  • 1Zhu Lina,Sun Chaoyi,Feng Li.Research on Early Warning for Worm Propagation Based on Area-Alert-Level.5th International Conference on Information Assurance and Security,2009,163~166.
  • 2Guim F,Ozalp E,Rodero I,Chester E.A Novel Framework for a Unified International System of Volcano Early Warning and Hazard Tracking.Proceedings of 4th International Conference on Recent Advances Space Technologies,2009,75~82.
  • 3Zhang Jian,Porras Phillip,Ullrich Johannes.Gaussian Process Learning for Cyber-Attack Early Warning.Statistical Analysis and Data Mining,2010,1:56~68.
  • 4张险峰,张峰,秦志光,刘锦德.具有预警功能的网络监管体系结构研究[J].计算机科学,2003,30(11):93-96. 被引量:2
  • 5周庆国,陈文波,荆涛,周睿,李廉.基于蠕虫特征的校园网防御体系[J].兰州大学学报(自然科学版),2006,42(1):106-109. 被引量:4
  • 6叶清,吴晓平,翟定军,付钰.基于证据推理的多agent分布式入侵检测系统模型[J].计算机应用研究,2009,26(8):3063-3066. 被引量:2

二级参考文献19

  • 1文伟平,卿斯汉,蒋建春,王业君.网络蠕虫研究与进展[J].软件学报,2004,15(8):1208-1219. 被引量:187
  • 2吴骏,王崇骏,王珺,陈世福.基于多Agent的动态层次化分布式入侵检测系统[J].计算机科学,2007,34(2):71-75. 被引量:7
  • 3ZOU C C, TOWSLEY D, GONG E. On the performance of internet worm scanning strategies,technical report,TR-03-CSW-07[D]. Department of Electrical and Computer Engineering, University of Massachusetts,2003.
  • 4LILJENSTAM M, YUAN Y, PREMORE B J, et al. A mixed abstraction level simulation model of large-scale internet worm infestations[C]//Washington DC, USA: Proceedings of the Tenth IEEE/ACM Symposium on Modeling,2003.
  • 5Zou C C, GAO L, GONG W, et al. Monitoring and early warning for internet worms[C]//Washington DC, USA:Proceedings of the 10th ACM Conference on Computer and Communication Security, 2003.
  • 6ELLIS D. Worm anatomy and model[C]//Washington DC, USA: Proceedings of the 10th ACM Conference on Computer and Communication Security, 2003.
  • 7Axelsson S. Intrusion detection systems: a survey and taxonomy. 14 March, 2000. Available at http: //citeseer. Nj. Nec. Com/axelsson00intrusion. Html
  • 8Mukherjee, Heberlein L T, Levitt K N. Network intrusion detection. IEEE Network, 1994, 8(3): 26 ~ 41
  • 9Eskin E,Miller M,et al. Adaptive Model Generation for Intrusion Detection Systems. Available at: http: ∥ www. Cs. Columbia. Edu/ ids/publications/adaptive-ccsids00. Pdf
  • 10Lee W,Stolfo S J,et al. Real Time Data Mining-based Intrusion Detection. Available at: http: // www. Cs. Columbia. Edu/ids/ concept/

共引文献5

同被引文献36

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部