期刊文献+

改进交叉策略的GA在流水车间多目标调度中的应用 被引量:4

Application of GA with improved crossover operators in multi-objective flow shop scheduling
下载PDF
导出
摘要 根据流水车间的特点,建立了包含平均流通时间、生产周期、总的机器空闲时间、延误工件数量、总的延误时间和最大延误时间的多目标调度模型,并采用改进交叉策略的遗传算法进行仿真实验,实验结果表明模型是正确的,算法是有效的。 A multi-objective scheduling model is established inclusive of average circulation period,production period,total machine stand-by time,delayed volume of work,total delayed time,maximum delayed time based on the characteristics of flow shop.Also,an emulation experiment is carried out by means of genetic algorithm with improved crossover operators,the result of which proves that the model is correct and the algorithm is effective.
作者 秦艳
机构地区 沙洲职业工学院
出处 《现代制造工程》 CSCD 北大核心 2010年第12期29-32,共4页 Modern Manufacturing Engineering
关键词 流水车间 多目标优化 遗传算法 flow shop multi-objective optimization Genetic Algorithm(GA)
  • 相关文献

参考文献9

  • 1Ponnambalam S G,Ramkumar V,Jawahar N.A multiobjective genetic algorithm for job shop scheduling[J].Production Planning & Control,2001,12(8).
  • 2Hall N G,Sriskandarajah C.A survey of machine scheduling problems with blocking and no-wait in process[J].Operations research,2005,44(3).
  • 3Allahverdi A,Aldowaisan T.New heuristics for m-machine no-wait flowshop to minimize total completion time[J].The International Journal of Management Science,2004(32).
  • 4Grabowski J,Pempera J.Some local search algorithms for no-wait flow-shop problem with makespan criterion[J].Computers and Operations Research,2005(32).
  • 5刘晓霞,谢里阳,陶泽,郝长中.柔性作业车间多目标调度优化研究[J].东北大学学报(自然科学版),2008,29(3):362-365. 被引量:20
  • 6黄小原,刘海龙.零工工厂多机多目标调度[J].系统工程,1995,13(5):32-36. 被引量:7
  • 7Konak A,Goit D,Smith A.Multi-objective optimization using genetic algorithms:a tutorial[J].Reliability Engineering and System Safety,2006,91(9).
  • 8Byung J P,Hyung R C,Hyun S K.A hybrid genetic algorithm for the job shop scheduling problems[J].Computers & Industrial Engineering,2003,45(4).
  • 9王凌.车间调度及其遗传算法[M].北京:清华大学出版社,2002..

二级参考文献8

  • 1王凌.车间调度及其遗传算法[M].北京:清华大学出版社,2002..
  • 2玄光南 程润伟.遗传算法与工程优化[M].北京:清华大学出版社,2004..
  • 3Konak A, Colt D, Smith A. Multi-objective optimization using genetic algorithms: a tutorial [ J ]. Reliability Engineering and System Safety, 2006,91 ( 9 ) : 992 - 1007.
  • 4Srinivas N, Deb K. Multiobjective optimization using nondominated rotting in genetic algorithms[J]. International Journal of Evolutionary Computation, 1994,2 ( 3 ) : 221 - 248.
  • 5Hyun C J, Kim Y, Kim Y K. A genetic algorithm for multiple objective sequencing problems mixed model assembly lines[J ]. Computers & Operations Research, 1998,25 (7/8) : 675-690.
  • 6Horn J, Nafpliotis N, Goldberg D E. A niched Pareto genetic algorithm for multiohjective optimization [C ] // The Proceedings of the First IEEE Conference on Evolutionary Computation. Piscataway: IEEE Service Center, 1994:82-87.
  • 7Byung J P, Hyung R C, Hyun S K. A hybrid genetic algorithm for the job shop scheduling problems [ J ]. Computers & Industrial Engineering, 2003,45 (4):597-613.
  • 8Ponnambalam S G, Ramkumar V, Jawahar N. A multiobjective genetic algorithm for job shop scheduling[J ]. Production Planning & Control, 2001,12(8) :764-774.

共引文献47

同被引文献38

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部