摘要
利用Mawhin的重合度理论,研究具有共振的n-阶m-点边值问题x^((n))(t)=f(t,x(t),x′(t),…,x^((n-1))(t)),t∈(0,1)x(0)=x(η),x′(0)=x″(0)=…=x^((n-2))(0)=0,x^((n-1))(1)=α_ix^((n-1))(ξ_i)解的存在性,其中n≥2,m≥3,f:[0,1]×R^n→R将有界集映为有界集,且当x(t)∈C^(n-1)[0,1]时,f(t,x(t),x′(t),…,x^((n-1))(t))∈L^1[0,1],0<ξ_1<ξ_2<…<ξ_(m-2)<1,0<η<1,α_i∈R.在这里并不要求f具有连续性.
Using the coincidence degree theory due to Mawhin,we study the existence ofsolutions for n-order m-point boundary value problemwhere n≥2,m≥3,f:[0,1]×Rn→R mapping bounded set to bounded set,f(t,x(t),x'(t),…,x((n-1))(t))∈L1[0,1]forx(t)∈C(n-1)[0,1],0ξ1ξ2…ξ(m-2)1,0η1,α_i∈R.We don't need that f is continuous.
出处
《数学的实践与认识》
CSCD
北大核心
2010年第24期174-180,共7页
Mathematics in Practice and Theory
基金
国家自然科学基金(10875094
10701032)
河北省自然科学基金(A2009000664)
河北省教育厅基金(2008153)
关键词
共振
FREDHOLM算子
多点边值问题
重合度理论
resonance
Fredholm operator
multi-point boundary value problem
coincidence degree theory