摘要
群G的子群H称为G的CAP-嵌入子群,如果对于|H|的每个素因子p,存在G的某个CAP-子群K,使得H的某个Sylow p-子群也是K的一个Sylowp-子群.本文通过假定G的p-Fitting子群F_p(G)的某个Sylow p-子群的每个极大子群是G的CAP-嵌入子群,得到一些新的结果.
A subgroup H of a finite group G is said to be CAP-embedded subgroup of G if, for each prime p dividing the order of H,there exists a CAP-subgroup K of G such that a Sylow p-subgroup of H is also a Sylow p-subgroup of K.In this paper,some new results are obtained based on the assumption that every maximal subgroup of some Sylow p-subgroup of p-Fitting subgroup F_p(G) have the CAP-embedded property in the group G.
出处
《数学的实践与认识》
CSCD
北大核心
2010年第24期207-212,共6页
Mathematics in Practice and Theory
基金
国家自然科学基金(10771132)
生态风险评价中数学模型的构建(2010065)
关键词
CAP-嵌入子群
极大子群
P-幂零群
超可解群
CAP-embedded subgroups
maximal subgroups
p-nilpotent groups
supersolvable groups