期刊文献+

基于传递闭包方法的非相关文献知识发现探索——以癌药物靶点为例 被引量:2

A Tentative Study of Disjoint Literature Discovery Based on Transitive Closure——Take Cancer Drug Target for Example
原文传递
导出
摘要 根据非相关文献知识发现的原理和思想,尝试将离散数学中传递闭包的知识运用到知识发现中,以寻找药物靶点之间的潜在关联为例,证明运用传递闭包的方法进行非相关文献知识发现的合理性和有效性,并将原有的三步知识发现模式发展为多步传递知识发现模式,得到更多的潜在关联,并保证较高的查准率和查全率。 Based on the principle of disjoint literature knowledge discovery,transitive closure in discrete mathematics is applied to find potential associations among drug targets,which confirms that transitive closure based disjoint literature knowledge discovery is achievable and effective.What’s more,the paper makes the original three-step model to multi-step knowledge discovery model,which can get more potential associations but ensure relative high precision and high recall at the same time.
作者 杨渊 高柳滨
出处 《现代图书情报技术》 CSSCI 北大核心 2010年第12期52-57,共6页 New Technology of Library and Information Service
关键词 传递闭包 WARSHALL算法 向量空间模型 药物靶点 非相关文献 知识发现 Transitive closure Warshall’s algorithm Vector space model Drug target Disjoint literature Knowledge discovery
  • 相关文献

参考文献19

  • 1Swanson D R. Undiscovered Public Knowledge [ J]. Library Quarterly, 1986, 56(2) :103 -118.
  • 2Lindsay R K, Gordon M D. Literature Based Discovery by Lexical Statistics [J]. Journal of Ameriean Society for Information Science, 1999,50(7 ) :674 - 685.
  • 3Gordon M D, Dumais S. Using Latent Semantic Indexing for Literature Based Discovery [ J]. Jo l of American Society for Information Science, 1998, 4(8) : 674-685.
  • 4Weeber M, Klein H, de Jong - van den Berg L T W, et al. Using Concepts in Literature - based Discovery: Simulating Swanson' s Reynaud- fish Oil and Migraine- Magnesium Discoveries [ J]. Journal of the American Society for Information Science and Technology, 2001, 52(7) :548 -557.
  • 5Stegmann J, Grohmann G. Hypothesis Generation Guided by Co - word Clustering[J]. Scientometrics, 2003, 56( 1 ) : 111 - 135.
  • 6Huang W, Nakamoril Y, Wang S Y, et al. Mining Scientific Literature to Predict New Relationships [ J ]. Intelligent Data Analysis, 2005, 9(2) :219 -234.
  • 7Yetisgen -Yildiz M, Pratt W. Using Statistical and Knowledge - based Approaches for Literature Based Discovery [ J]. Journal of Biomedical lnformatlcs ,2006,39 ( 6 ) :600 - 611.
  • 8Wren J D. Extending the Mutual Information Measure to Rank Inferred Literature Relationship[ J ]. BMC Bioinformatics, 2004, 5 (1) :145 -158.
  • 9Hristovski D, Dzeroski S, l?eterlin B, et al. Supporting Discovery in Medicine by Association Rule Mining of Bibliographic Database [ C ]. In : Proceedings of the 4th European Conference on Principles of Data Mining and Knowledge Discovery. 2000:446 -451.
  • 10张云秋,冷伏海.基于文献内聚度的非相关文献知识发现排序方法研究[J].现代图书情报技术,2009(6):50-54. 被引量:5

二级参考文献25

  • 1陈文海,葛玮,郝克刚,侯红.面向对象软件中类内聚度度量分析与研究[J].计算机应用研究,2007,24(7):40-42. 被引量:3
  • 2Swanson D R. Undiscovered Public Knowledge[J]. Library Quarterly, 1986, 56(2) :103 -118.
  • 3Gordon M D, Dumais S. Using Latent Semantic Indexing for Literature Based Discovery[ J]. Journal of the American Society for Information Science and Technology, 1998, 49 ( 8 ) : 674 - 685.
  • 4Stegmann J, Grohmann G. Hypothesis Generation Guided by Co - word Clustering[J]. Scientometrics, 2003, 56(1 ):111 - 135.
  • 5Van der Eijk C C, Van Mulligen E M, Kors J A, et al. Constructing an Associative Concept Space for Literature - based Discovery [ J]. Journal of the American Society for Information Science and Technology, 2004, 55 ( 5 ) : 436 - 444.
  • 6Hristovski D, Peterlin B, Mitchell J A, et al. Using Literature - based Discovery to Identify Disease Candidate Genes [ J ]. International Journal of Medical Informatics, 2005, 74 ( 2 - 4) : 289 - 298.
  • 7Friedman P W, Winnick B L, Friedman C P, et al. Development of a MeSH - based Index of Faculty Research Interests [ C ]. In: Proceedings of Annual AMIA Symposium, 2000:265 - 269.
  • 8Harris Z. Language and Information [ M ]. New York : Columbia University Press, 1987.
  • 9Swanson D R. Migraine and Magnesium: Eleven Neglected Connections[ J]. Perspectives in Biology and Medicine, 1988, 31 (4) : 526 - 557.
  • 10Arrowsmith [ EB/OL]. [ 2008 - 12 - 31 ]. http://arrowsmith. psych. uic. edu/arrowsmith_uie/index. html.

共引文献28

同被引文献25

  • 1董凤娇,陈桂林,王精明.“离散数学”中关系传递闭包的几种方法探讨[J].滁州学院学报,2021,23(2):132-136. 被引量:2
  • 2陈显强.二元关系的传递性和传递闭包探讨[J].数学的实践与认识,2004,34(9):135-137. 被引量:13
  • 3何小亚,王洪山.利用关系矩阵求传递闭包的一种方法[J].数学的实践与认识,2005,35(3):172-175. 被引量:23
  • 4Swanson D R. Undiscovered public knowledge [ J ]. Library Quarterly, 1986,56 (2) : 103 - 118.
  • 5Lindsay R K, Gordon M D. Literature based discovery by lexical statistics[J]. Journal of American Society for Information Science, 1999(49) :674 -685.
  • 6Gordon M D, Dumais S. Using latent semantic indexing for literature based discovery [ J ]. Journal of American Society for information Science, 1998,4 ( 8 ) : 674 - 685.
  • 7Wren J D. Extending the mutual information measure to rank inferred literature relationship [ J ]. BMC Bioinformatics, 2004 (5) :145.
  • 8Stegmann J, Grohmann G. Hypothesis generation guided by co- word clustering[ J]. Scientometrics,2003,56 ( 1 ) : 111 - 135.
  • 9Huang Wei, Nakamoril Y, Wang Shouyang, et al. Mining scientific literature to predict new relationships [ J ]. Intelligent Data Analysis ,2005, 9 ( 2 ) :219 - 234.
  • 10Yetisgen-Yildiz M, Pratt W. Using statistical and knowledge-based approaches for literature based discovery [ J ]. Journal of Biomedical Informatics ,2006,39 (6) :600 - 611.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部