期刊文献+

非线性观测算子的集合卡尔曼滤波的改进 被引量:2

IMPROVEMENT ON ENSEMBLE KALMAN FILTER OF NONLINEAR OBSERVATIONAL OPERATOR
下载PDF
导出
摘要 在带有线性观测算子的集合卡尔曼滤波中,对预报误差方差阵比较客观的调整是用与时间相依的因子对其进行膨胀调整,然后用极大似然方法去估计膨胀因子.若观测算子是非线性的,新息的似然函数不易表示,从而膨胀方法不能直接套用.我们通过对非线性观测算子的线性逼近,得到似然函数的近似表达式,进而实现对预报误差方差阵的膨胀调整.数据模拟表明这种方法预报精度更高,更加稳健,效果远好于传统的非线性集合卡尔曼滤波方法. In ensemble Kalman filter of linear observational operator, relatively objective adjustment on forecast error eovariance matrix is on-line inflation adjustment followed by inflation factor optimization by minimizing --21ogqikelihood of observation-minus-forecast residuals. If observational operator is nonlinear, --2log-likelihood are easily expressed, therefore inflation adjustment cannot be applied directly. We derive approximate expression of --2log-likelihood through linear approximation of observational operator, followed by inflation adjustment on foreeast error eovarianee matrix. Data simulation indicated that this proposed method is more accurate and more robust, much better than traditional ensemble Kalman filter of nonlinear observational operator.
出处 《北京师范大学学报(自然科学版)》 CAS CSCD 北大核心 2010年第6期671-674,共4页 Journal of Beijing Normal University(Natural Science)
基金 国家重点基础研究发展计划资助项目(2010CB950703)
关键词 资料同化 集合卡尔曼滤波 预报误差方差阵 膨胀调整 adjustment data assimilation ensemble Kalman filter forecast error covariance matrix inflation
  • 相关文献

参考文献1

二级参考文献13

  • 1Anderson, J, L., 2001: An ensemble adjustment Kalman filter for data assimilation. Mort. Wea., Rev., 129, 2844- 2903.
  • 2Bengtsson, T., D. Nychka, and C. Snyder, 2003: A frame work for data assimilation and forecasting in high dimensional non-linear dynamic systems. J. Geophys. Res., 108(D), 8875.
  • 3Burgers, J. M., 1974: The Nonlinear Diffusion. D. Reidel Publ. Co., Dordrecht, Holland, 173pp.
  • 4Cohn, S. E. 1997: An introduction to estimation theory. J. Meteor. Soc. Japan, 75, 257-288.
  • 5Constantinescu, M., A. Sandu, T. Chai, and G. R. Carmichael, 2007: Ensemble-based chemical data as- similation. I: General approach. Quart. J. Roy. Meteor. Soc., laa, 1229--1243.
  • 6Dee, D. P., and A. M. da Silva, 1999: Maximum-likelihood estimation of forecast and observation error covariance parameters. Part 1: Methodology. Mon. Wea. Rev., 127, 1822-1849.
  • 7Hamill, T. M., 2006: Ensemble-based atmospheric data assimilation. Predictability of Weather and Climate, Cambridge press, 123-156.
  • 8Ide, K., P. Courtier, G. Michael, and A. C. Lorenc, 1997: Unified notation for data assimilation: operational, sequential and variational, d. Meteor. Soc. Japan, 75, 71- 79.
  • 9Julier, S. J., and K. Uhlmann, 2004: Unscented filtering and nonlinear estimation. Proc. IEEE Aeroscience and Electronic Systems, 92, 410-422,
  • 10Miller, R. N., M. Ghil, and F. Gauthiez, 1994: An advanced data assimilation in strongly nonlinear dy- namical systems. J. Atmos. Sci., 15, 1037-1056.

共引文献6

同被引文献21

  • 1张永平,李鹏,白茜,李和明.考虑衰减直流分量的动态电压恢复器补偿量的直接检测方法[J].电网技术,2005,29(22):66-70. 被引量:6
  • 2刘成思,薛纪善.关于集合Kalman滤波的理论和方法的发展[J].热带气象学报,2005,21(6):628-633. 被引量:34
  • 3张静,徐政.基于卡尔曼滤波误差的电能质量扰动检测[J].电力系统及其自动化学报,2006,18(5):25-30. 被引量:18
  • 4Peters W, Jacobson A R, Sweeney C, et al. An atmospheric perspective on North American carbondioxide exchange: CarbonTracker[J]. Proceedings of the National Academy of Sciences, 2007,104 : 18925.
  • 5Peters W, Miller J B, Whitaker J, et al. An ensemble data assimilation system to estimate CO2 surface fluxes from atmospheric trace gas observations[J]. J Geophys Res, 2005, 110, D24304, doi:lO. 1029/2005JD006157.
  • 6Deng F, Chen J M, Ishizawa M, et al. Global monthly CO2 flux inversion with a focus over North America[J]. Tellus B,2007, 59(2),179.
  • 7DING Ning, CAI Wei, SUO Juan, et al. Voltage sag disturbance detection based on RMS voltage method[C] // Power and Energy Engineering Conference, 2009. APPEEC 2009. Asia-Pacific. Wuhan, China: IEEE Conference Publications, 2009: 1-4.
  • 8SCHWARTZENBERG J W, NWANKPA C O, FISCHL R, et al. Prediction of distribution system disturbances[C]// Power Electronics Specialists Conference, PESC '94 Record, 25th Annual IEEE, Taipei, 1994, 2:1077-1082.
  • 9MOSTAFA M A. Ka|man filtering algorithm for electric power quality analysis: harmonics and voltage sags problems[C] // IEEE Power Engineering, 2007 Large Engineering Systems Conference, IEEE ConferencePublications, Montreal, Que, 2007: 159-165.
  • 10RAY P K, SUBUDHI B. Ensemble-Kalman-filter-based power system harmonic estimation[J]. Instrumentation and Measurement, IEEE, 2012, 61(12): 3216-3224.

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部