摘要
在带有线性观测算子的集合卡尔曼滤波中,对预报误差方差阵比较客观的调整是用与时间相依的因子对其进行膨胀调整,然后用极大似然方法去估计膨胀因子.若观测算子是非线性的,新息的似然函数不易表示,从而膨胀方法不能直接套用.我们通过对非线性观测算子的线性逼近,得到似然函数的近似表达式,进而实现对预报误差方差阵的膨胀调整.数据模拟表明这种方法预报精度更高,更加稳健,效果远好于传统的非线性集合卡尔曼滤波方法.
In ensemble Kalman filter of linear observational operator, relatively objective adjustment on forecast error eovariance matrix is on-line inflation adjustment followed by inflation factor optimization by minimizing --21ogqikelihood of observation-minus-forecast residuals. If observational operator is nonlinear, --2log-likelihood are easily expressed, therefore inflation adjustment cannot be applied directly. We derive approximate expression of --2log-likelihood through linear approximation of observational operator, followed by inflation adjustment on foreeast error eovarianee matrix. Data simulation indicated that this proposed method is more accurate and more robust, much better than traditional ensemble Kalman filter of nonlinear observational operator.
出处
《北京师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2010年第6期671-674,共4页
Journal of Beijing Normal University(Natural Science)
基金
国家重点基础研究发展计划资助项目(2010CB950703)
关键词
资料同化
集合卡尔曼滤波
预报误差方差阵
膨胀调整
adjustment data assimilation
ensemble Kalman filter
forecast error covariance matrix
inflation