摘要
针对基本微粒群优化(PSO,Particle Swarm Optimization)算法在应用于具有极多局部极值和维数被优化问题时易陷入局部最优和早熟收敛的不足,提出了一种新的改进算法称之为欧氏微粒群算法.此改进算法的主要思想是当算法陷入局部最优时,给微粒一个扰动因子,它的大小会因当前微粒与全局最优微粒的欧式距离的大小而自适应变化,促使微粒跳出局部最优.在实验中选取典型标准函数对算法进行测试,实验结果表明,本文算法优于标准微粒群算法(SPSO)和高斯微粒群算法(GPSO),而且随着问题复杂性的提高其性能优越性越明显.
This paper develops a new improved particle swarm optimization (PSO) algorithm named Euclidean PSO(EPSO) to solve the problems such as the insufficiency of local optima and premature convergence when PSO used in the issues of rich local extremum and dimension optimized.The main improvement of the algorithm is to develop an interference factor for the particles.The value of interference factor will be self-adaptive according to the Euclidean distance between the current particle and the global best particle.And it has confirmed its excellent performance in benchmark functions compared with Standard PSO (SPSO) and Gaussian PSO(GPSO).
出处
《武汉大学学报(理学版)》
CAS
CSCD
北大核心
2010年第6期717-722,共6页
Journal of Wuhan University:Natural Science Edition
基金
国家自然科学基金资助项目(60803160)
湖北省自然科学基金重点项目(2009CDA136
2009CDA034)
湖北省教育厅科学研究项目(Q20101110
D2009110)
关键词
微粒群优化算法
欧氏距离
干扰因子
particle swarm optimization algorithm
Euclidean distance
interference factor