期刊文献+

非线性随动强化条件下的安定定理 被引量:1

Shakedown theorems for elastic plastic nonlinear kinematic-hardening solids
下载PDF
导出
摘要 基于经典的安定理论与随动强化模型的一般性质,将结构在强化过程中的背应力计入Von Mises屈服准则,建立了随动强化条件下结构的静力安定定理;将背应力与对应的塑性应变率的点积在一个载荷循环内的积分计入塑性耗散功,建立了随动强化条件下结构的机动安定定理,扩展了经典安定理论的应用范围。针对两种定理的存在格式进行了理论证明,并以推论形式给出了结构在随动强化条件下静力安定和机动安定另外两种存在格式。结果表明,随动强化材料的安定状态和安定极限不受强化过程的影响,只取决于材料的初始屈服应力和最终屈服应力。 Based on classical shakedown theorems,the general nonlinear kinematic-hardening is considered,and the back stress of particular hardening law to the corresponding plastic deformation is included.Firstly,the back stress is included to Von Mises yield criterion,then static theorem for elastic-plastic nonlinear kinematic-hardening solids are derived.Secondly,the dot matrix of back stress and plastic strain rate is added to dissipation function,then kinematic theorem for elastic-plastic nonlinear kinematic hardening solids are derived.The classical shakedown theorems are extended to nonlinear kinematic-hardening bodies,and two corollaries are given based on shakedown theorems for nonlinear kinematic-hardening bodies.The theorems reveal that the shakedown of structures is not affected by the particular form of the hardening curve,but just by the initial and ultimate yield stresses.
机构地区 西安理工大学
出处 《应用力学学报》 CAS CSCD 北大核心 2010年第4期664-669,共6页 Chinese Journal of Applied Mechanics
基金 陕西省重点学科建设专项资金(080204) 博士启动基金(210901)
关键词 安定 背应力 非线性随动强化 弹塑性 shakedown,back stress,nonlinear kinematic-hardening,elastic-plastic.
  • 相关文献

参考文献12

  • 1Corradi L,Maier G.Dynamic non-shakedown theorem for elastic perfectly-plastic continua[J].Journal of the Mechanics and Physics of Solids,1974,5:401-413.
  • 2Nguyen Quoc Son.On shakedown analysis in hardening plasticity[J].Journal of the mechanics and Physics of Solids,2003,51:101-125.
  • 3Duc Chinh Pham.Dynamic shakedown and a reduced kinematic theorem[J].International Journal of Plasticity,1996,8:1055-1068.
  • 4Duc Chinh Pham.Shakedown kinematic theorem for elastic-perfectly plastic bodies[J].International Journal of Plasticity,2001,5:773-780.
  • 5Duc Chinh Pham.Shakedown static and kinematic theorems for elastic-plastic limited linear kinematic-hardening solids[J].European Journal of Mechanics A/Solids,2005,1:35-45.
  • 6Duc Chinh Pham.Shakedown theory for elastic plastic kinematic hardening bodies[J].International Journal of Plasticity,2007,7:1240-1259.
  • 7Druyanov Boris,Roman Itzhak.Shakedown theorems extended to elastic non perfectly plastic bodies[J].Mechanics Research Communications,1995,6:571-576.
  • 8Druyanov Boris,Roman Itzhak.An extension of the static shakedown theorem[J].Mechanics Research Communications,2001,5:499-504.
  • 9Druyanov Boris,Roman Itzhak.Extension of the static shakedown theorems to softening materials[J].Mechanics Research Communications,2004,31:383-384.
  • 10Borino Guido.Consistent shakedown theorems for materials with temperature dependent yield functions[J].International Journal of Solids and Structures,2000,37:3121-3147.

二级参考文献12

  • 1冯西桥,刘信声.不同应变强化模型下结构安定性的研究[J].力学学报,1994,26(6):719-723. 被引量:7
  • 2Matsumoto Y,Magda D,Hoeppner D W,Kim T Y.Effect of machining processes on the fatigue strength of hardened AISI 4340 steel[J].ASME Journal of Engineering for Industry,1991(113):154-159.
  • 3Smith S R.An investigation into the effects of hard turning surface integrity on component service life[D].PhD thesis,Georgia:Georgia Institute of Technology,2001.
  • 4Melan E.Theorie statisch unbestimmter tragwerke aus idealpastischem baustoff[J].Sitzungsbericht der Akademie der Wissenscha ften (Wien) Abt,IIA195,1938:145-195.
  • 5Koiter W T.General theorems for elastic-plastic bodies[M].In:Sneddon I N and Hill R (eds).Progress in solid Mechanics,North-Holland,Amsterdam,1960,1:165-221.
  • 6Pham Duc Chinh.Shakedown kinematic theorem for elastic-perfectly plastic bodies[ J ].International Journal of Plasticity,2001,17:773-780.
  • 7Tin Loi F,Grundy P.Deflection stability of work hardening structures[J].Journal of Structural Mechanics,1978,6:331-347.
  • 8Maier G.Shakedown matrix theory allowing for work hardening and second order geometric effects[C].in:Proceeding of the International Conference on Foundations of Plasticity.Warsaw,1972,417-433.
  • 9Bower A F.Cyclic hardening properties of hard-drawn copper and rail steel[J].Journal of the Mechanics and Physics of Solids,1989,37:455-470.
  • 10Dawson T Y G,Kurfess T R.Tool life,wear rates,and surface quality in hard turning[J].Trans NAMRI/SME,2001,258-65.

共引文献2

同被引文献6

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部