期刊文献+

非线性轨迹优化问题的保辛自适应求解方法 被引量:2

Symplectic adaptive algorithm for solving nonlinear trajectory optimization problem
下载PDF
导出
摘要 非线性轨迹优化问题一般是一个非线性最优控制问题。将非线性系统的最优控制问题导入到哈密顿体系的辛几何空间当中,基于对偶变量变分原理提出了求解非线性最优控制问题的一种保辛自适应方法。以时间区段两端协态作为独立变量,在时间区段内采用拉格朗日插值近似状态和协态变量,并利用对偶变量变分原理将非线性最优控制问题转化为非线性方程组的求解,保持了哈密顿系统的辛几何结构。并进一步,提出了基于多层次迭代的自适应算法,提高了非线性最优控制问题的求解效率。数值实验验证了该算法在求解非线性轨迹优化问题中的有效性。 In general,nonlinear trajectory optimization problem is also a nonlinear optimal control problem.In this paper,the nonlinear optimal control problem is transformed into the symplectic space of Hamiltionian system and a symplectic adaptive algorithm based on dual variable principle is proposed for solving nonlinear optimal control problem.Costate variables at two ends of time interval are taken as independent variables and the state and costate variables inside the time interval are approximated by Lagrange interpolation.Then,nonlinear optimal control problems are replaced by nonlinear equations through dual variable principle and the symplectic algorithm for solving nonlinear optimal control problems can be obtained at the same time.The computation efficiency of the proposed symplectic algorithm is improved by using adaptive idea,and numerical simulation shows the validity of the proposed algorithm for solving nonlinear trajectory optimization problems.
出处 《应用力学学报》 CAS CSCD 北大核心 2010年第4期732-739,共8页 Chinese Journal of Applied Mechanics
基金 国家自然科学基金(10632030 10721062 10902020 11072044) 高等学校博士点基金(20070141067) 辽宁省博士启动基金(20081091)
关键词 非线性最优控制 变分原理 协态独立变量 自适应 保辛 nonlinear optimal control,dual variable principle,costate independent variable,adaptive algorithm,symplectic.
  • 相关文献

参考文献18

  • 1Betts J T.Survey of numerical methods for trajectory optimization[J].Journal of Guidance,Control,and Dynamics,1998,21(2):193-207.
  • 2雍恩米,陈磊,唐国金.飞行器轨迹优化数值方法综述[J].宇航学报,2008,29(2):397-406. 被引量:125
  • 3Ross I M,Fahroo F.A perspective on methods for trajectory optimization[C] // AIAA/AAS Astrodynanics Specialist Conference and Exhibit,Monterey,California,2007.
  • 4Betts J T.Practical methods for optimal control using nonlinear programming[M].Philadelphia:Society for Industrial Mathematics,2001.
  • 5Hull D G.Conversion of optimal control problems into parameter optimization problems[J].Journal of Guidance,Control,and Dynamics,1997,20(1):57-60.
  • 6Shan Y Z,Duan G R.Applying nonlinear programming to solve optimal control problem of Lunar probe soft landing[C] //Proceedings of the 26th Chinese Control Conference,2007.
  • 7Gao Y,Kluever C.Low-thrust interplanetary orbit transfers using hybr id trajectory optimization method with multiple shooting[C] //AIAA/A AS Astrodynamics Specialist Conference,2004.
  • 8Huntington G T,Rao A V.Optimal reconfiguration of spacecraft formations using the Gauss pseudospectral method[J].Journal of Guidance,Control and Dynamics,2008,31(3):689-698.
  • 9文浩,金栋平,胡海岩.倾斜轨道电动力绳系卫星回收控制[J].力学学报,2008,40(3):375-380. 被引量:11
  • 10Huntington G T,Benson D A,Rao A V.A comparison of accuracy and computational efficiency of three pseudospectral methods[C] //AIAA Guidance,Navigation and Control Conference,2007.

二级参考文献72

  • 1钟万勰.分析结构力学与有限元[J].动力学与控制学报,2004,2(4):1-8. 被引量:26
  • 2钟万勰,姚征.时间有限元与保辛[J].机械强度,2005,27(2):178-183. 被引量:30
  • 3陈刚,万自明,徐敏,陈士橹.飞行器轨迹优化应用遗传算法的参数化与约束处理方法研究[J].系统仿真学报,2005,17(11):2737-2740. 被引量:17
  • 4钟万勰,高强.约束动力系统的分析结构力学积分[J].动力学与控制学报,2006,4(3):193-200. 被引量:28
  • 5Arnold V I. Mathematical Methods of Classical Mechanics. New York : Springer - Verlag, 1989.
  • 6Goldstein H. Classical Mechanics. 2 ed. London : Addison - Wesley, 1980.
  • 7Feng K. On Difference Schemes and Symplectic Geometry. Proceedings of the 5th international symposium on differential geometry and differential equations, Beijing, 1984.
  • 8Hairer E, Wanner G. Solving Ordinary Differential Equations II - Stiff and Differential - Algebraic Problems 2ed. Berlin : Springer, 1996.
  • 9Hairer E,NOrsett S P,Wanner G. Solving Ordinary Differential Equations I - Nonstiff Problems 2ed. Berlin: Springer, 1993.
  • 10Hairer E, Lubich C, Wanner G. Geometric Numerical Integration:Structure - Preserving Algorithm for Ordinary Differential Equations. Second ed. New York : Springer,2006.

共引文献175

同被引文献43

  • 1任远,崔平远,栾恩杰.基于不变流形的小推力Halo轨道转移方法研究[J].宇航学报,2007,28(5):1113-1118. 被引量:8
  • 2钟万勰,高强.约束动力系统的分析结构力学积分[J].动力学与控制学报,2006,4(3):193-200. 被引量:28
  • 3Koon W S, Lo M W, Marsden J E, et al. Dynamical system, the three-body problem and space mission design [ M ]. Springer, Heidelberg, 2006.
  • 4Howell K, Kakoi M. Transfers between the Earth-Moon and Sun- Earth systems using manifolds and transit orbits [ J ]. Acta. Astronautica, 2005, 56: 652- 669.
  • 5Gomez G, Jorba A, Masdemont J, et al. Study of the transfer between halo orbits[ J]. Aeta Astronautica, 1998, 43 (9 - 10) : 493 - 520.
  • 6Peng H J, Zhao J, Gao Q, et al. Nonlinear optimal control of the continuous low-thrust transfer between Halo orbits[ C ]. The 3rdInternational Symposium on Systems and Control in Aeronautics and Astronautics, China, 2010 : 616 - 620.
  • 7Gao Y. Linear feedback guidance for low-thrust many-revolution earth-orbit transfers [ J ]. Journal of Spacecraft and Rockets, 2009, 46(6) : 1320 - 1325.
  • 8Tian B L, Zong Q. Optimal guidance for reentry vehicles based on indirect Legendre pseudospectral method [ J ]. Acta Astronautica, 2011,68(7 -8) : 1176 -1184.
  • 9Lu P. Regulation about time-varying trajectories precision entry guidance illustrated [ J ]. Journal of Guidance, Control, and Dynanfics, 1999, 22(6) : 784 -790.
  • 10Ohtsuka T. Quasi-newton-type continuation method for nonlinear receding horizon control[ J ]. Journal of Guidance, Control, and Dynamics, 2002, 25 (4) : 685 - 692.

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部