期刊文献+

大变形薄板多体系统的动力学建模 被引量:5

Dynamic formulation for thin plate system with large deformation
下载PDF
导出
摘要 基于非线性弹性理论,考虑剪切应变和横向应变,用绝对节点坐标法建立了大变形矩形薄板的动力学变分方程;为了提高非线性刚度阵的计算效率,根据非线性刚度阵与广义坐标阵的函数关系式,在非线性刚度阵中分离出广义坐标阵,从而避免了每个时间步长的单元刚度阵的积分运算。在此基础上,引入运动学约束关系,建立了大变形薄板系统第一类拉格朗日方程,对重力作用下大变形二连板进行数值仿真。计算结果表明:随着薄板的柔度增大,低频的弯曲变形与高频拉伸变形的耦合愈加显著;此外,系统机械能守恒验证了该模型正确性。 Based on nonlinear elastic theory,absolute nodal coordinate formulation for a rectangular plate with large deformation is established,in which both shear strain and transverse normal strain are taken into account.In order to improve the computational efficiency,by utilizing the function relationship between nonlinear stiffness matrices and generalized coordinate matrices,the generalized coordinate matrices are separated from the stiffness matrices to avoid the integral calculus for calculating element stiffness matrix in each time step.On this basis,the Lagrange equations of the first kind of the rectangular plate with large deformation are established by introduction of the kinematic constraint equations.The results of the simulation example of two rectangular plate with large deformation shows that with the increase of the flexibility of the thin plate,the coupling of the longitudinal deformation in low frequency and the transverse deformation in high frequency is more significant.Conservation of total energy verifies the correctness of the formulation in this paper.
作者 邹凡 刘锦阳
机构地区 上海交通大学
出处 《应用力学学报》 CAS CSCD 北大核心 2010年第4期740-745,共6页 Chinese Journal of Applied Mechanics
基金 国家自然科学基金(10872126 10772113)
关键词 大变形 薄板多体系统 动力学 large deformation,rectangular plate system,dynamics.
  • 相关文献

参考文献6

  • 1Wallrapp O,Schwertassek R.Representation of geometric stiffening in multi-body system simulation[J].International Journal for Numerical Methods in Engineering,1991,32:1833-1850.
  • 2Yoo H H,Chung J.Dynamics of rectangular plates undergoing prescribed overall motion[J].Journal of Sound and Vibration,2001,239 (1):123-137.
  • 3Zhang D J,Liu C Q,Huston R L.On the dynamics of an arbitrary flexible body with large overall motion:an integrated approach[J].Mechanics of Structures and Machines,1995,23 (3):419-438.
  • 4Yakoub R R,Shabana A A.Three dimensional absolute nodal coordinate formulation for beam elements:implementation and applications[J].ASME Journal of Mechanical Design,2001,123:614-621.
  • 5Dmitrochenko O N,Pogorelov D Y.Generalization of plate finite elements for absolute nodal coordinate formulation[J].Multibody System Dynamics,2003,10:17-43.
  • 6Yoo W S,Kim M S,Kim H W,et al.Developments of multibody system dynamics:computer simulations and experiments[J].Multibody System Dynamics,2007,18:35-58.

同被引文献32

  • 1杜超凡,章定国,洪嘉振.径向基点插值法在旋转柔性梁动力学中的应用[J].力学学报,2015,47(2):279-288. 被引量:18
  • 2左孔天,陈立平,钱勤,罗震,董敏钦,王磊.求解拓扑优化问题的一种移动渐进-小波混合算法[J].固体力学学报,2004,25(4):471-475. 被引量:5
  • 3赵飞云,洪嘉振,刘锦阳,谢永诚.高速旋转柔性矩形薄板的动力学建模和近似算法[J].振动工程学报,2006,19(3):416-421. 被引量:10
  • 4Kane TR, Ryan RR, Banerjee AK. Dynamics of a cantilever beam attached to a moving base. Journal of Guidance, Control and Dynamics,1987, 10(2): 139-151.
  • 5Cai GP, Hong JZ, Yang SX. Dynamic analysis of a flexible hubbeam system with tip mass. Mechanics Research Communications,2005, 32(2): 173-190.
  • 6Yoo HH, Chung J. Dynamics of rectangular plates undergoing prescribed overall motion. Journal of Sound and Vibration, 2001,239(1): 123-137.
  • 7Southwell R, Gough F. The free transverse vibration of airscrew blades. British A. R. C. Report and Memoranda, 1921, 766.
  • 8Li L, Zhang DG, Zhu WD. Free vibration analysis of a rotating hubfunctionally graded material beam system with the dynamic sti ening e ect. Journal of Sound and Vibration, 2014, 333: 1526-1541.
  • 9Saurabh K, Anirban M. Large amplitude free vibration analysis of axially functionally graded tapered rotating beam by energy method. Mechanisms and Machine Science, 2015, 23: 473-483.
  • 10Yoo HH, Pierre C. Modal characteristic of a rotating rectangular cantilever plate. Journal of Sound and Vibration, 2003, 259(1): 81-96.

引证文献5

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部