摘要
弹道目标跟踪问题中动态方程与观测方程皆为非线性,影响跟踪精度。使用最优线性无偏估计方法可以有效地解决观测的非线性问题,而蒙特卡罗滤波方法适用于目标状态的非线性估计。将快速高斯粒子滤波与最优线性估计方法作了有机结合,通过对典型的弹道目标跟踪模型进行仿真,发现新算法在精度与实时性上优于粒子滤波。
The dynamic and observational equations are both nonlinear in the issue of ballistic target tracking. The best linear unbiased estimate (BLUE) methods and the Monte Carlo filters provide good solutions to observational and dynamic nonlinearity respectively. The fast Gaussian particle filter (FGPF) and BLUE are cmnbined to simulate a typical ballistic target tracking model. The simulation results show that the new filter is more accurate and timesaving than PF.
出处
《现代防御技术》
北大核心
2010年第6期162-166,共5页
Modern Defence Technology
基金
航空科学基金(20090196005)
关键词
弹道目标跟踪
目标模型
快速高斯粒子滤波
最优线性无偏估计
ballistic target tracking
target model
fast Gaussian particle filter (FGPF)
best linear unbiased estimator (BLUE)