期刊文献+

Replica horizontal-shuffled iterative decoding of low-density parity-check codes 被引量:1

Replica horizontal-shuffled iterative decoding of low-density parity-check codes
原文传递
导出
摘要 For practical considerations,it is essential to accelerate the convergence speed of the decoding algorithm used in an iterative decoding system. In this paper,replica versions of horizontal-shuffled decoding algorithms for low-density parity-check (LDPC) codes are proposed to improve the convergence speed of the original versions. The extrinsic information transfer (EXIT) chart technique is extended to the proposed algorithms to predict their convergence behavior. Both EXIT chart analysis and numerical results show that replica plain horizontal-shuffled (RPHS) decoding converges much faster than both plain horizontal-shuffled (PHS) decoding and the standard belief-propagation (BP) decoding. Furthermore,it is also revealed that replica group horizontal-shuffled (RGHS) decoding can increase the parallelism of RPHS decoding as well as preserve its high convergence speed if an equivalence condition is satisfied,and is thus suitable for hardware implementation. For practical considerations,it is essential to accelerate the convergence speed of the decoding algorithm used in an iterative decoding system. In this paper,replica versions of horizontal-shuffled decoding algorithms for low-density parity-check (LDPC) codes are proposed to improve the convergence speed of the original versions. The extrinsic information transfer (EXIT) chart technique is extended to the proposed algorithms to predict their convergence behavior. Both EXIT chart analysis and numerical results show that replica plain horizontal-shuffled (RPHS) decoding converges much faster than both plain horizontal-shuffled (PHS) decoding and the standard belief-propagation (BP) decoding. Furthermore,it is also revealed that replica group horizontal-shuffled (RGHS) decoding can increase the parallelism of RPHS decoding as well as preserve its high convergence speed if an equivalence condition is satisfied,and is thus suitable for hardware implementation.
出处 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 2010年第6期32-40,共9页 中国邮电高校学报(英文版)
关键词 REPLICA shuffled decoding LDPC codes EXIT chart convergence speed replica shuffled decoding LDPC codes EXIT chart convergence speed
  • 相关文献

参考文献16

  • 1Gallager R G.Low-density parity-check codes.Cambridge,MA,USA:MIT Press,1963.
  • 2MacKay D J C,Neal R M.Near Shannon limit performance of low density parity check codes.Electronics Letters,1996,32(18):1645-1646.
  • 3Vila Casado A I,Griot M,Wesel R D.Informed dynamic scheduling for belief-propagation decoding of LDPC codes.Proceedings of the IEEE International Conference on Communications (ICC'07),Jun 24-28,2007,Glasgow,UK.Piscataway,NJ,USA:IEEE,2007:932-937.
  • 4Vila Casado A I,Griot M,Wesel R D.Improving LDPC decoders via informed dynamic scheduling.Proceedings of the IEEE 2007 Information Theory Workshop (ITW'07),Sep 2-6,2007,Lake Tahoe,CA,USA.Piscataway,NJ,USA:IEEE,2007:208-213.
  • 5Kim J H,Nam M Y,Song H Y,et al.Variable-to-check residual belief propagation for informed dynamic scheduling of LDPC Codes.Proceedings of the IEEE 2008 International Symposium on Information Theory and Its Applications (ISITA'08),Dec 7-10,2008,Auckland,New Zealand.Piscataway,NJ,USA:IEEE,2008:1-4.
  • 6Kim J H,Nam M Y,Song H Y.Variable-to-check residual belief propagation for LDPC codes.Electronics Letters,2009,45(2):117-118.
  • 7Mansour M M,Shanbhag N R.High-throughput LDPC decoders.IEEE Transactions on Very Large Scale Integration Systems,2003,11(6):976-996.
  • 8Zhang J,Fossorier M P C.Shuffled iterative decoding.IEEE Transactions on Communications,2005,53(2):209-213.
  • 9Tong S,Wang X M.A simple convergence comparison of Gallager cndes under two message-passing schedules.IEEE Communications Letters,2005,9(3):249-251.
  • 10Sharon E,Litsyn S,Goldberger J.Efficient serial message-passing schedules for LDPC decoding.IEEE Transactions on Information Theory,2007,53(11):4076-4091.

同被引文献13

  • 1Si Z W, Thobaben R, Skoglund M. Rate-compatible LDPC convolutional codes achieving the capacity of the BEC [J]. IEEE Transactions on Information Theory, 2012, 58(6): 4021-4029.
  • 2Chen C L, Lin Y H, Chang H C.A 2.37-Gb/s 284.8 mW rate-compatible (491,3,6) LDPC-CC decoder [J]. IEEE Journal of Solid-State Circuits, 2012, 47(4): 817-831.
  • 3Uchikawa H, Kasai K, Sakaniwa K. Design and performance of rate-compatible non-binary LDPC convolutional codes [J]. IEICE Transactions on Fundamentals of Electronics Communications and Computer Sciences, 2011, E94A(ll ): 2135-2143.
  • 4Benmayor D, Papaharalabos S, Mathiopoulos P.Design of efficiently encodable rate-compatible LDPC codes using vandermonde extension matrices [J]. Wireless Personal Communications, 2011, 60(4): 695-708.
  • 5Benmayor D, Mathiopoulos P, Constantinou P.Rate-compatible IRA codes using quadratic congruential extension sequences and puncturing [J]. IEEE Communications Letters, 2010, 14(5): 441-443.
  • 6Ha J, Kim J, Klinc D, et al. Rate-compatible punctured low-density parity-check codes with short block lengths [J]. IEEE Transactions on Information Theory, 2006, 52(2): 728-738.
  • 7Vellambi B N, Fekri F.Finite-length rate-compatible LDPC codes: a novel puncturing scheme [J]. IEEE Transactions on Communications, 2009, 57(2): 297-301.
  • 8Ha J, Klinc D, Kwon J, et al. Layered BP Decoding for rate-compatible punctured LDPC codes [J]. IEEE Communications Letters, 2007, 11(5): 440-442.
  • 9Zhaug J, Fossorier M. Shuffled iterative decoding [J]. IEEE Transactions on Communications, 2005, 53(2): 209-213.
  • 10Cui Z, Wang Z, Zhang X. Reduced-complexity column-layered decoding and implementation for LDPC codes [J]. lET Communications, 2011, 5(15): 2177-2186.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部