期刊文献+

OPTIMAL DIVIDEND STRATEGIES IN THE DIFFUSION MODEL WITH STOCHASTIC RETURN ON INVESTMENTS

OPTIMAL DIVIDEND STRATEGIES IN THE DIFFUSION MODEL WITH STOCHASTIC RETURN ON INVESTMENTS
原文传递
导出
摘要 This paper studies the optimal dividend problem in the diffusion model with stochastic return on investments. The insurance company invests its surplus in a financial market. More specially, the authors consider the case of investment in a Black-Scholes market with risky asset such as stock. The classical problem is to find the optimal dividend payment strategy that maximizes the expectation of discounted dividend payment until ruin. Motivated by the idea of Thonhauser and Albrecher (2007), we take the lifetime of the controlled risk process into account, that is, the value function considers both the expectation of discounted dividend payment and the time value of ruin. The authors conclude that the optimal dividend strategy is a barrier strategy for the unbounded dividend payment case and is of threshold type for the bounded dividend payment case.
出处 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2010年第6期1071-1085,共15页 系统科学与复杂性学报(英文版)
基金 This work is supported by the National Basic Research Program of China (973 Program) under Grant No. 2007CB814905 and the National Natural Science Foundation of China under Grant No. 10871102.
关键词 Barrier strategy diffusion model DIVIDEND HJB equation threshold strategy. 扩散模型 收益率 投资 随机 金融市场 保险公司 时间价值 价值功能
  • 相关文献

参考文献17

  • 1B. De Finetti, Su un'impostazione alternativa dell teoria collectiva del rischio, Transaction of the 15th International Congress of Actuaries, New York, 1957, 2: 433-443.
  • 2K. Borch, The theory of risk, Journal of the Royal Statistical Society: Series B, 1967, 29: 432-452.
  • 3K. Borch, The capital structure of a firm, Swedish Journal of Economics, 1969, 71: 1-13.
  • 4H. Biihlmann, Mathematical Methods in Risk Theory, Springer, Berlin, 1970.
  • 5H. U. Gerber, Games of economics survival with discrete- and continuous-income processes, Operations Research, 1972, 20: 37-45.
  • 6H. U. Gerber, An Introduction to Mathematical Risk Theory, S. S. Huebner Foundation Monographs, University of Pennsylvania, 1979.
  • 7S. Asmussen and M. Tsksar, Controlled diffusion models for optimal dividend pay-out, Insurance: Mathematics and Economics, 1997, 20: 1-15.
  • 8S. Brown, Optimal investment policies for a firm with random risk process: Exponential utility and minimizing the probability of ruin, Mathematics of Operations Research, 1995, 20(4): 937-958.
  • 9J. Cai, H.-U. Gerber, and H. L. Yang, Optimal dividends in an Ornstein-UhlenbeCk type model with credit and debit Interest, North American Actuarial Journal, 2006, 10(2): 94-119.
  • 10H. U. Gerber and E. S. W Shiu, Optimal dividends: Analysis with Brownian motion, North American Actuarial Journal, 2004, 8(1): 1-20.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部