期刊文献+

稳像中基于BP神经网络的颤振预测及改进 被引量:3

Vibration forecasting using BP neural network for image stabilization and an improving method
下载PDF
导出
摘要 为了解决航拍过程中的图像抖动问题,研究了机载相机的颤振规律;提出在稳像过程中,利用BP(BackPropagation)神经网络的函数逼近功能对相机颤振规律进行模拟,预测相机颤振矢量的方法;针对单个BP神经网络稳定性较差且精度较低的问题,提出在预测网络上增加一个误差校正网络以提高预测精度的方法.该方法使用误差校正网络对预测网络输出的结果进行二次预测、补偿,提高了网络系统的稳定性和计算精度.仿真实验表明:在训练样本相同的情况下,预测网络和误差校正网络相结合的方法能够对相机颤振矢量进行高精度预测,且运算速度较快,满足了机载相机实时稳像的需求. The vibration characteristic of airborne camera was studied to solve the image vibration in aerial photography.A method based on the ability of function approximation of BP neural network to simulate the vibration characteristic of airborne camera and predict the vibration displacement vectors during image stabilization was proposed.The inherent defects of BP neural network are its poor stability and low precision which cannot be accepted in the application of image stabilization.To overcome these problems,a new method combining two networks named prediction network and error correction network was proposed.The later network performs further prediction and compensation on the outputs of the former one,and thus optimizes the property of the network system.Experimental results show that with the same training samples,the combined network system is more stable and the outputs are of higher precision than that of a single network,and the computing is also fast,all of which meet the demands of real-time image stabilization in aerial photography.
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2010年第12期2263-2268,共6页 Journal of Zhejiang University:Engineering Science
基金 国家"973"重点基础研究发展规划资助项目(2009CB724006) 浙江省重大科技专项资金资助项目(2008C16018) 中国航天科技集团公司航天科技创新基金资助项目
关键词 预测网络 误差校正网络 过度训练 泛化能力 机载相机 实时稳像 颤振规律 predicting network error correcting network over training generalization airborne camera real-time image stabilization vibration characteristic
  • 相关文献

参考文献5

二级参考文献16

  • 1胡铁松,袁鹏,丁晶.人工神经网络在水文水资源中的应用[J].水科学进展,1995,6(1):76-82. 被引量:97
  • 2梁华,杨明忠,陆培德.用人工神经网络预测摩擦学系统磨损趋势[J].摩擦学学报,1996,16(3):267-271. 被引量:12
  • 3陈世福 陈兆乾.人工智能与知识工程[M].南京:南京大学出版社,1998..
  • 4Raman H Sunikumar N.利用人工神经网络对水资源时间系列进行多因素变量的模拟[J].水文科学学报,1995,40(2).
  • 5[5]Martin T Hagan, Howard B Demuth, Mark Beale. Neural Network Design[M]. New York PWS Publishing Company,2002.
  • 6Miller G F,Todd P M,Hedge S U. Designing neural networks using genetic algorithms. Proceedings of Third International Conference on Genetic Algorithms,1989,379~384.
  • 7Mark T Leung, Chen Au-Sing, Hazem Daouk. Forcasting exchange rates using general regression neural networks[J].Computer and Operations Research,2000,27:1093-1110.
  • 8Zhang Yun,He Yong.Study of prediction model on grey relational BP neural network based on rough set[J].Machine Learning and Cybernetics,2005 (8):4764-4769.
  • 9孟亚峰.电子装备智能BIT中故障诊断及故障趋势预测方法研究[D].石家庄:军械工程学院,2004.
  • 10赵金厚,朱尚凑.数据库技术在模糊聚类预测中的应用研究[J].计算机工程与设计,1997,18(4):12-15. 被引量:8

共引文献103

同被引文献20

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部