摘要
从函数扩充的角度将模糊推理视为两个论域语言值与语言值之间的对应关系,将一条规则视为一个由前提和结论组成的模糊数据对,将规则集视为一组已知的模糊数据节点集,将它们作为模糊插值节点,给出了一种插值推理函数的建立方法。然后利用扩展原理给出插值推理结果,推理的过程简化为一个求复合函数的过程。无论是对稀疏规则集还是对完备规则集,只要具有有序交叠互补性,该推理方法就能保证还原性,语气单调性,属性介值性和保正规性。
In this paper,the fuzzy reasoning is treated as a mapping of two universes of discourse with linguistic values.A fuzzy rule is treated as a couple of two fuzzy numbers,and a fuzzy rule-base a fuzzy interpolative nodes set.A method to construct an inference function is presented,and then the reasoning conclusion is obtained by extension principle.The inference is facilitated to a composite function.If rule-base is an ordered rule set witch is overlapping complement,the method can guarantee consistency of inference,monotonicity on linguistic mood,interposal property and normality,no matter that the rule-base is sparse or complete.
出处
《模糊系统与数学》
CSCD
北大核心
2010年第6期8-16,共9页
Fuzzy Systems and Mathematics
基金
中央高校基本科研业务费专项资金资助项目(SWJTU09ZT37)
关键词
模糊推理
模糊数
规则基
插值推理
扩展原理
Fuzzy Reasoning
Fuzzy Number
Rule-base
Fuzzy Interpolative Reasoning
Extension Principle