期刊文献+

集值决策表基于邻域关系的属性约简 被引量:2

Attribute Reduction of Set-valued Decision Tables Based on Neighborhood Relation
原文传递
导出
摘要 集值信息系统是完备信息系统的广义形式,它当中的一些对象在某些属性下的取值可能不止一个,反映的是信息的不确定性。本文在集值信息系统上引入对象的邻域关系,并以每个对象的邻域作为基本集,建立了集值信息系统的粗糙集方法。为了简化的知识表示,我们进一步讨论了邻域协调集值决策表的正域约简与邻域不协调集值决策表的近似分布约简,给出了正域约简与近似分布约简的等价刻画条件,并借助区分函数给出了计算正域约简与近似分布约简的方法。 Set-valued information systems are generalized complete information systems,in which some objects may have more than one value for an attribute that reflecting the uncertainty of the information.In this paper,by introducing a neighborhood relation to set-valued information systems,we establish a rough set approach based on the neighborhood of every object as elementary set.In order to simplify the knowledge representation,we further discuss the positive reduction of neighborhood consistent set-valued decision tables and the approximate distribution reduction of neighborhood inconsistent set-valued decision tables;some sufficient and necessary conditions for a set positive region reduction or approximate distribution reduction were given.Finally,by constructing the discernibility functions,the approaches for positive region reduction and approximate distribution reduction are provided.
出处 《模糊系统与数学》 CSCD 北大核心 2010年第6期133-140,共8页 Fuzzy Systems and Mathematics
基金 四川省重大科技专项配套资金资助项目(2008GZ0118) 西华大学重点实验室资助项目(XZD0818-09)
关键词 集值信息系统 邻域关系 集值决策表 正域约简 近似分布约简 区分函数 Set-valued Information System Neighborhood Relation Set-valued Decision Table Positive Region Reduction Approximate Distribution Reduction Discernibility Function
  • 相关文献

参考文献3

二级参考文献16

  • 1王珏,苗夺谦,周育健.关于Rough Set理论与应用的综述[J].模式识别与人工智能,1996,9(4):337-344. 被引量:264
  • 2王国胤.Rough集理论和知识获取[M].西安:西安交通大学出版社,2001..
  • 3Pawlak Z. Rough set. International Journal of Computer and Information Science, 1982(11 ) : 341- 356
  • 4Pawlak Z. Rough set: Theoretical Aspects of Reasoning about Data. Boston: Kluwer Academic Publishers, 1991.
  • 5Han J, Cai Y, Cercone N. Data driven discovery of quantitative rules in relational databases. IEEE Transactions on Knowledge and Data Engineering, 1993,5 (1) : 29-40
  • 6Mrozek A. Rough sets and dependency analysis among attributes in computer implementations of expert's inference models [J]. International Journal of Man-Machine Studies, 1989, 30 (4):457-473
  • 7Yasdi R . Combining rough sets learning and neural learning : method to deal with uncertain and imprecise information, Neuralcomputing,1996,7 (1) :61-84
  • 8Greco S, Matarazzo B, Slowinski R. Rough sets theory for multicriteria decision analysis. European Journal of Operational Research, 2001,129: 1-47
  • 9Kim D. Data classification based on tolerant rough set. Pattern Recognition,2001,34:1613-1624
  • 10Yao Y Y. Two views of the theory of rough sets in finite universes. International Journal of Approximate Reasoning, 1996, 15 (4):291-317

共引文献666

同被引文献15

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部