期刊文献+

证明函数一致连续的几种方法 被引量:2

Some methods for proving function's consistent continuity
下载PDF
导出
摘要 主要从五个方面探究证明函数一致连续的方法:从导函数判断函数是否一致连续;利用Lipschitz条件,推导出判断复合函数是否一致连续的方法;由函数定义域上数列的limn→∞xn存在,而nl→im∞(fxn)不存在,从而得(fx)不一致连续;从函数(fx)导数的极限判断函数一致连续;用另一个函数给出函数一致连续的充要条件。主要的研究方法是放缩条件、类比、等价转化。 This article discusses the methods for proving function's consistent continuity through five areas.first,using knowledge of derivative function searches for the ways of proving function's consistent continuity;second,using Lipschitz condition to judge whether the composite functions are consistent-continuity functions;third,limn→∞xnexists on the domain of a function,butlimn→∞(fxn)dose not exist,so (fx)is inconsistent-continuity function;fourth,using derivative function's limit to judge whether functions are consistent-continuity functions;fifth,using another function to give a necessary and sufficient condition of the function's consistent continuity.The main research methods of this paper are analogy,scaling condition and equivalent transformation.
作者 唐美燕
出处 《贵州师范学院学报》 2010年第12期7-10,共4页 Journal of Guizhou Education University
关键词 函数 一致连续 LIPSCHITZ条件 可导 极限 function consistent-continuity Lipschitz condition derivative limit
  • 相关文献

参考文献5

二级参考文献7

共引文献9

同被引文献3

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部