期刊文献+

Bphen作为缓冲层对有机太阳能电池的光电性能影响

Optoelectronic Analysis of Organic Solar Cells with Bphen as a Buffer Layer
下载PDF
导出
摘要 选用CuPc(酞菁酮)为供电子的材料,使用Bphen(4,7-二苯基-1,10-邻二氮杂菲)为缓冲层的材料,研究了结构为ITO/PEDOT:PSS/CuPc(20 nm)/C60(40 nm)/Bphen(x)/Ag(100 nm)的有机太阳能电池(OSC)。考察OSC性能与缓冲层Bphen厚度之间的关系,优化器件的结构。在标准太阳光照条件下(AM1.5)测量器件的I-V特性,结果显示,太阳电池的能量转换效率与缓冲层厚度密切相关。采用高真空蒸发的方法,制作了结构为ITO/PEDOT:PSS/CuPc(20 nm)/C60(40 nm)/Bphen(x)/Ag(100 nm)的器件,器件效率随着Bphen厚度的增加先增大后变小,当厚度为0 nm时,效率为0.85%;当厚度为2.5 nm时,效率为1.22%;而当厚度为5 nm时,效率为1.69%;当厚度为7.5 nm时,效率则为0.79%,当厚度为10 nm时,效率则为0%。 CuPc(Phthalocyanine ketone) and Bphen(8-hydroxyquinoline aluminum) were separately selected as donor materials and buffer layers to study the structure of ITO/CuPc(20 nm)/C60(40 nm)/Bphen(x)/Ag(100 nm) of the organic solar cells(OSC).The relationship between OSC barrier properties and the thickness of Bphen was analyzed to optimize the device structure.The current-voltage characteristic of the solar cell under AM1.5 solar illumination showed that the power conversion efficiency(PCE) was dependent of the different thickness of the buffer layer.ITO/CuPc(20 nm)/C60(40 nm)/Bphen(x)/Ag(100 nm) devices were made by high-vacuum evaporation technology.Efficiency first becomes higher and then lower as the thickness of the Bphen increased.When the thickness is 0 nm,the efficiency is 0.85%;when the thickness is 2.5 nm, the efficiency is 1.22%;when the thickness is 5 nm,the efficiency is 1.69%;when the thickness is 7.5 nm,the efficiency is 0.79%;10 nm,the efficiency is 0%.
出处 《光电子技术》 CAS 北大核心 2010年第4期250-254,共5页 Optoelectronic Technology
基金 教育部留学归国基金部级基金(GGRYJJ08-05) 教育部博士点基金部级基金(20090185110020) 四川省青年基金资助课题(09ZQ026-074)(9140A02060609DZ0208)
关键词 有机太阳能电池 光伏效应 缓冲层 Bphen organic soalr cells photovoltaic buffer layer Bphen
  • 相关文献

参考文献3

二级参考文献80

  • 1任驹,郑建邦,赵建林.给体-受体型有机太阳电池光敏层的优化设计[J].物理学报,2007,56(5):2868-2872. 被引量:13
  • 2J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T. Q. Nguyen, M. Dante, and A. J. Heeger, Science 317, 222 (2007).
  • 3J. G. Xue, S. Uchida, B. P. Rand, and S. R. Forrest, Appl. Phys. Lett. 85, 5757 (2004).
  • 4J. S. Yu, J. Huang, L. Zhang, and Y. D. Jiang, J. Appl. Phys. 106, 063103 (2009).
  • 5K. Walzer, B. Maennig, M. Pfeiffer, and K. Leo, Chem. Rev. 107, 1233 (2007).
  • 6B. Kippelen and J. L. Bredas, Energy Environ. Sci. 2, 251 (2009).
  • 7Y. Yang and F. Wudl, Adv. Mater. 21, 1401 (2009).
  • 8C. W. Tang, Appl. Phys. Lett. 48, 183 (1986).
  • 9W. Ma, C. Yang, X. Gong, K. Lee, and A. J. Heeger Adv. Funct. Mater. 15, 1617 (2005).
  • 10S. H. Park, A. Roy, S. Beaupre, S. Cho, N. Coates, J. S Moon, D. Moses, M. Leclerc, K. Lee, and A. J. Heeger Nat. Photonics 3, 297 (2009).

共引文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部