期刊文献+

一种基于RBF神经网络的无线传感器网络定位模型

RBF Neural Network Based Localization Model for Wireless Sensor Networks
下载PDF
导出
摘要 在无线传感器网络覆盖区域内的不同位置采集信号强度值,利用径向基函数(RBF)神经网络建立信号强度到节点坐标之间的映射模型,将采集到的信号强度值作为神经网络的输入矢量进行训练,利用训练好的神经网络实现未知节点的定位。实验结果表明,该模型具有较好的定位精度,其平均定位误差低于10%。 We collect signal strength at different positions in wireless sensor networks covering areas.We also employ Radial Basis Function(RBF) neural network to construct a mapping model between signal strength and the coordinate of a node.We then train such a neural network with the collected signal strength value(an input vector) before use the trained neural network to localize an unknown node.Experimental results show that this model has higher accuracy,whose average localization error is less than 10%.
出处 《山东科学》 CAS 2010年第6期82-85,共4页 Shandong Science
基金 国家自然科学基金资助项目(60802030) 山东省自然科学基金(ZR2009GQ002) 山东省科技攻关计划项目(2007GG2QT01007)
关键词 无线定位 径向基函数(RBF) 神经网络 wireless localization Radial Basis Function(RBF) neural network
  • 相关文献

参考文献7

  • 1孙利明,李建中,陈渝等.无线传感器网络[M].北京:清华大学出版社,2005.
  • 2AKYILDIZ I F,SU W,SANAKARASUBRAMANIAM Y.Wireless Sensor Network:A Survey[J].Computer Networks,2002,38 (4):393 -422.
  • 3TELLAECHE A,BURGOSARTIZZU X P,PAJARES G,RIBEIRO A,QUINTANILLA C F.A New Vision-Based Approach to Different Spraying in Precision Agriculture[J].Computer and Electronics in Agriculture,2008,60(2) ;144 -155.
  • 4MAO K Z,Huang G B.Neuron Selection for RBF NeuralNetwork CLASSIFIER Based on Data Structure Preserving Criterion[J].IEEE Transactions on Neural Networks,2005,16(6):1531-1541.
  • 5张志华,郑南宁,史罡.径向基函数神经网络的软竞争学习算法[J].电子学报,2002,30(1):132-135. 被引量:11
  • 6HONG X,HARRIS C J.Nonlinear Model Structure Design and Construction using Orthogonal Least Squares and D-Optimality Design[J].IEEE Transactions on Neural Networks,2002,13(5):1248 -1250.
  • 7魏海坤,丁维明,宋文忠,徐嗣鑫.RBF网的动态设计方法[J].控制理论与应用,2002,19(5):673-680. 被引量:33

二级参考文献10

  • 1[1]Bezdek J C. Pattern recognition with fuzzy objective function algorithm[M].New York: Plenum, 1981.
  • 2[2]KohonenT.Self-organizationandassociative memory [M].Berlin,Germany: Springer-Velag, 1989,3rd. ed.
  • 3[3]Chen S, et al. Orthogonal least squares learning algorithm for radial basis function networks [J]. IEEE Trans. on Neural Networks, 1991,2(2):302-309.
  • 4[4]Tarassenko B, et al. Supervised and unsupervised learning in radial basis function classifiers [J]. Vision Image Signal Processing, 1994, 141(1) :210- 216.
  • 5[5]Musavi M F, et al. On the training of radial basis function neural networks [J]. Neural Networks, 1992,5(3) :595 - 603.
  • 6[6]Kaminski W, et al. Kernel orthonormalization in radial basis function neural networks [J]. IEEE Trans. on Neural Networks, 1997, 8(5):1177- 1183.
  • 7[7]Yair E. Competitive learning and soft competition for vector quantizer design [J]. IEEE Trans. on Signal Processing, 1992,40(2):294 -308.
  • 8[8]Kirkpatrick S. Optimization by simulated annealing [J]. Science, 1983,220(3) :671-680.
  • 9宋爱国.一种可在线学习的变结构径向基函数网络及其在被动声纳目标识别中的应用[J].电子学报,1999,27(10):65-69. 被引量:5
  • 10魏海坤,徐嗣鑫,宋文忠.RBF网学习的进化优选算法[J].控制理论与应用,2000,17(4):604-608. 被引量:25

共引文献71

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部